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� = 0:1, the upper bound� = 0:198 could be concluded, which is in-
correct as the�-metric betweenP andPo is actually 1. It is also noted
that

~Go = ~Mo
~No

=
1

a

�

a
+

1

as+ b
� �

b

a
1�

�b

a

with a = 1 + �2 andb =
p
1 + �2. Thus for� = 9, � = 8, and

� = 0:1, the Hankel norm of~Go is0:0123, which implies thatK exists
such thatF`(G; K) is stable, andkF`(G; K)k1 <  for any such
that 1:0001 <  � ��1 = 5:0505, leading to the false conclusion
that the true plantP is stabilized by such a controllerK. Actually the
nominal model as in (13) admits a very large stability margin for the
closed-loop system, but unfortunately,P as in (13) is just not in the
set of�-metric uncertainty stabilizable by the sameK. In fact, a stable
and causal interpolation function�1 can be obtained withk�1k1 �
� � 2�=(1 + �2). MoreoverP1 = Fu(G; �1) is stabilizable by the
same controllerK. However eitherP1 is unstable (violating stability
of P ), orwno(1+P �o P1) = 0 [violating continuity and smoothness of
P (j!)]. ThusP1, constructed using boundary interpolation and linear
fraction, is not equivalent toP , which is not stabilized by the same
controller. Consequently, the uncertainty model is invalidated in spite
of the fact that (11) is satisfied.
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Mean-Square Small Gain Theorem for Stochastic Control:
Discrete-Time Case

Jianbo Lu and Robert E. Skelton

Abstract—This note presents a small gain theorem in the mean square
sense for multiple (interconnected) linear systems with multiplicative
noises. The small-gain theorem is proposed in terms of the spectral radius
of a matrix, whose elements are the squares of norms of the involved
transfer functions. Both robust stability and performance conditions are
characterized by the new small-gain theorem.

Index Terms—Internal mean square stability (IMSS), multiplicative
noise uncertainty, robust control, stochastic control.

I. INTRODUCTION

The control problem for linear systems with multiplicative noises has
been shown applicable in many engineering problems [3], [6]. However
the control synthesis problem, especially for output feedback, has not
yet been solved. The approach proposed in [5] might provide some
insight for this problem. This motivates the study for more general
system descriptions. Existing studies are usually dealing with single
linear systems of multichannel multiplicative noises, and we consider
the interconnections among multiple linear systems of multiplicative
noises. One application of this problem is to design robust control for
linear systems of multiplicative noises with respect to uncertainties of
the same type, or linear systems with structured white parameters.

Two stability concepts in the mean-square sense have been studied
here, namely, the usualmean-square stability(MSS) and theinternal
mean-square stability(IMSS). A multiloop small gain condition is es-
tablished for IMSS, which is also applicable to MSS due to the equiva-
lence of those two stability concepts. The condition is characterized by
the spectral radius of a matrix whose elements are the squares ofH2

norms of the involved transfer functions. The spectral radius of certain
nonnegative matrix has been pursued before. It has been used to charac-
terize upper bounds for structured singular value [1] and inl1 optimal
control [4]. In [4], the elements of the matrix whose spectral radius is
taken arel1-induced norms (without squares) of transfer functions.

The note is organized as follows. Section II studies the interconnec-
tion between multiple linear systems with multiplicative noises. The
mean-square small gain theorem for a single loop interconnection is
proposed for deducing IMSS. Section III deals with robustness anal-
ysis for linear stochastic systems of norm-bounded dynamic stochastic
perturbations. Section IV concludes the note.

The following notations are used in this note.+ and denote the
sets of strictly positive-real numbers and real numbers respectively. The
sets of alln � n matrices whose elements belong toand + are
denoted asM( n) andM( n

+) respectively. All the strictly positive
definite matrices inM( n) consist of a set denoted asM+(

n). I
denotes a unit matrix whose dimension can be determined from the
context.det(�), �(�), �(�), tr(�) and(�)T denote the determinant, the
largest eigenvalue, the spectral radius, the trace and the transpose of a
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matrix(�) respectively.
 denotes Kronecker product, andvec(�) is the
column stack of a matrix.k � k is the Euclidean norm of a vector.E[�]
denotes the usual expectation operator of a stochastic variable. For a
discrete time stochastic processz = fzkg

1

k=0

E1[z]
�
= lim

k!1
E[zk]:

�ij is the Kronecker delta function (�ij = 1 if i = j and zero oth-
erwise). The setv of all discrete time stochastic processes with finite
variances is defined as

v
�
= fz = fzkg

1
k=0 : kzkv is finiteg

where the signal norm is defined askzkv
�
= E1[kzk2].

II. STOCHASTICMODELS ANDMEAN-SQUARESMALL GAIN THEOREM

Consider a set of stochastic systems,SSS. Each elementT of SSS is a
mapping from the signal spacev to the signal spacev, i.e.,T : v 7! v.
T has the following state-space description:

xk+1 = Axk + [Bwk]vk; zk = Cxk (1)

wherexk 2 n is the system state,zk 2 is the system output,
vk 2 is the system input. Notice that there is a multiplierwk in
the input channel, andT is said to have multiplicative noise if this
multiplierwk is a white noise process. A linear system associated with
T is denoted asT , whose state-space description is

xk+1 = Axk +Bvk; zk = Cxk

i.e., T comes fromT by dropping the white noisewk in the input
channel. The following assumptions are made for each elementT of
SSS.

A1) The multiplierw = fwkg
1
k=0 is a scalar white noise process

satisfying for allt � 0 andk � 0

E[wkwt] = �kt; E[wk] = 0

which is called thestochastic multiplier of the systemT . The
stochastic multipliers of different elements inSSS are uncorre-
lated.

A2) The initial statex0 of T is a normal random variable which
is uncorrelated withwk andvk for all k � 0.

A3) wk andvk are uncorrelated with each other for allk � 0.
A4) A is a discrete-time stable matrix, i.e.,�(A) < 1.

For each elementT in SSS, the system norm ofT is defined by

kT ks
�
= max
kvk 6=0

kzkv
kvkv

:

Under assumptions A1)�A4), the following result is easy to obtain.
Lemma 2.1: Consider the stochastic system in (1). Ifv 2 v with

kvkv 6= 0, thenkzkv = kT kskvkv. Let T be the linear system asso-
ciated with the stochastic systemT , thenkT ks = kTk2, wherek � k2
is the usualH2 norm of a linear stable system.

SupposeT1; T2 2 SSS and consider the interconnection in Fig. 1. Let
Ti be the system of the following state-space description fori = 1; 2:

x1 =A1x1 + [B1w1 ]z2 z1 = C1x1

x2 =A2x2 + [B2w2 ]z1 z2 = C2x2

wherexi 2 n is the system state andnx is the state dimension of
Ti. It is not hard to verify that for eachk � 0, if the initial statesx1 is
uncorrelated withw2 , thenx2 is uncorrelated withz1 ; if the initial
statex2 is uncorrelated withw1 , thenx1 is uncorrelated withz2 .

The augmented dynamics for the interconnection in Fig. 1 is

x̂k+1 =
A1 B1C2w1

B2C1w2 A2
x̂k (2)

wherex̂k = [xT1 xT2 ]T is the augmented system state. While the
augmented dynamics for the interconnection in Fig. 2 is

x̂k+1 =
A1 B1C2w1

B2C1w2 A2
x̂k +

B1w1

B2w2

�
d2

d1
: (3)

Notice that (2) and (3) describe systems with multiplicative noises of
some structures, or systems withstructured multiplicative noises,or
systems withstructured white parameter uncertainties.

Definition 2.2: The interconnection in Fig. 1 is said to be mean-
square stable if for any initial condition̂x0, limk!1 E[x̂kx̂

T
k ] = 0,

wherex̂k is the system state of (2). The interconnected system in Fig. 2
is said to be mean-square stable if for any uncorrelated white noise
processesd1 andd2, limk!1 E[x̂kx̂

T
k ] is finite.

It is not hard to prove that the mean-square stability of the system in
Fig. 1 is equivalent to the mean-square stability of the system in Fig. 2.
Now let’s consider the condition for the mean-square stability.

Theorem 2.3: The interconnection in Fig. 1 is mean-square stable
iff for any �1 > 0 and�2 > 0 there existsX1 2 M+(

n ) and
X2 2 M+(

n ) such that

X1 =A1X1A
T
1 +B1C2X2C

T
2 B

T
1 + �2B1B

T
1 ;

X2 =A2X2A
T
2 +B2C1X1C

T
1 B

T
2 + �1B2B

T
2 : (4)

Proof: The system in Fig. 1 is mean-square stable iff for any un-
correlated white noise processesd1 andd2, which are uncorrelated
with w1 andw2 and have variances�1; �2 2 +, there exists a fi-
nite X̂ 2 M+(

n ) satisfying the following:

X̂ =
A1

A2
X̂

A1

A2

T

+
B1C2X2C

T
2 B

T
1

B2C1X1C
T
1 B

T
2

+
�2B1B

T
1

�1B2B
T
2

: (5)

PartitionX̂ according to the dimensions ofx1 andx2 (the system states
of T1 andT2, respectively) as

X̂ =
X1 XT

21

X21 X2

:

The (2, 1) element of the above matrix obeying (5) satisfies the fol-
lowing:

X21 = A2X21A
T
1 :

Using Kronecker product, this equation is equivalent to

(I � A1 
A2)vec(X21) = 0: (6)

Since�(A1) < 1 and�(A2) < 1, hence

�(A1 
A2) = �(A1)�(A2) < 1

which implies that(I �A1 
A2) is nonsingular, or the only solution
for (6) is

vec(X21) = 0; or X21 = 0:
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Therefore the mean-square stability of the system in Fig. 1 is equivalent
to the existence ofX1 2M+(

n ) andX2 2M+(
n ) satisfying

(4).
Definition 2.4: The interconnection in Fig. 1 is said to be internally

mean-square stable if for any finite but uncorrelated white noise pro-
cessesd1 andd2, which are uncorrelated with the stochastic multipliers
of T1 andT2, the signalsz1 andz2 in Fig. 2 belong tov.

Lemma 2.5: Consider the interconnected system in Fig. 1, where
T1; T2 2 SSS. The following statements are equivalent:

iv) the system in Fig. 1 is mean-square stable;
v) the system in Fig. 2 is internally mean-square stable;

vi) kT1kskT2ks 6= 1.
Proof: If i) holds then there existsX1 andX2 satisfying (4) by

Theorem 2.3. Considering

kzik
2
v
= CiXiC

T
i

therefore,zi 2 v for i = 1; 2, i.e., i)) ii). Now we want to show
ii) ) i). The following Lyapunov equation has a unique, finite and
positive–definite solutionLi due to assumption A4)

Li = AiLiA
T
i +BiB

T
i

for i = 1; 2. Letx1; x2 be the system states ofT1 andT2. The covari-
ances ofx1 andx2 for the systemsT1 andT2 satisfy the following:

X1 = kd2 + z2k
2
v
L1; X2 = kd1 + z1k

2
v
L2: (7)

Sincekdi + zik
2
v
� kdik

2
v
+ kzik

2
v

, henceXi 2 M+(
n ) and is

finite if kzikv is finite for i = 1; 2. Therefore ii)) i). Now assume
that ii) is true. From (3), it is not hard to see that[d1 d2]

T andx̂ are
uncorrelated. Hencedi is uncorrelated withzi (i = 1; 2), i.e., the
following equations hold:

kz1k
2
v
= kT1k

2
s
(kd2k

2
v
+ kz2k

2
v
)

kz2k
2
v
= kT2k

2
s
(kd1k

2
v
+ kz1k

2
v
): (8)

A necessary and sufficient condition for the existence of finite and
uniquekz1kv andkz2kv to satisfy (8) is the norm condition iii). There-
fore, ii), iii).

Define a unit ballBBBSSS in SSS as:BBBSSS
�
= f� 2 SSS: k�ks � 1g. If T1

is any element inBBBSSS, the following question is natural to ask: what
condition should be posed onT2 such that the interconnection in Fig. 1
is mean square stable? That is, we want to find conditions such that a
linear dynamic stochastic system will maintain MSS in the presence of
norm-bounded dynamic stochastic uncertainties inBBBSSS. The following
result provides an answer to this question.

Theorem 2.6 (Mean-Square Small Gain Theorem):For any norm-
bounded dynamic stochastic systemT1 in BBBSSS, the interconnection in
Fig. 1 is mean-square stable iffkT2ks < 1.

Proof: kT2ks < 1 implies that iii) in lemma 2.5 is true, hence the
sufficiency is obvious. Now we proceed to prove the necessity. Assume
the interconnection in Fig. 1 is mean-square stable, butkT2ks � 1.
Then there must exist aT1 2 BBBSSS such thatkT1kskT2ks = 1, one
of suchT1 can be constructed asT1 = T2=kT2k

2
s
. This implies that

for this T1, there are no unique solutions forkz1kv andkz2kv in (8).
This contradicts that the interconnection is mean-square stable. Hence,
kT2ks < 1 is needed to guarantee that the interconnection in Fig. 1 is
mean-square stable for allT1 2 BBBSSS.

Now we consider a multiloop feedback interconnection in Fig. 3.
MSS and IMSS for the multiloop feedback interconnection can be sim-
ilarly defined as in definition 2.2 and 2.4. Using i) and ii) in theorem
2.5 one loop at a time leads to the following result.

Corollary of Lemma 2.5:The multiloop feedback interconnection
in Fig. 3 is mean-square stable iff it is internally mean-square stable.

Fig. 1. The single loop feedback interconnection.

Fig. 2. Input–output signals in the single loop feedback interconnection.

Theorem 2.7 (Multiloop Mean-Square Small Gain The-
orem): Suppose in Fig. 3,�1, �2; . . . ; �n 2 SSS, and T is a
stochastic system with multiports

xk+1 =Axk +

n

j=1

[Bjwj ] vj

zi =Cjxk +

n

j=1

[Dijwj ] vj ; i 2 f1; 2; . . . ; ng

vj = [�j(zj)]k; j 2 f1; 2; . . . ; ng (9)

wherex 2 n is the system state,zj 2 for j 2 f1; . . . ; ng,
andw1; w2; . . . ; wn are mutually uncorrelated white noise processes
which are also uncorrelated with�1; �2; . . . ; �n. DenoteTij as the
transfer matrix of the system quadrupleA; Bj ; Ci; Dij for i; j 2
f1; 2; . . . ; ng. If

�[G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)] < 1 (10)

where

G(T )
�
=

kT11k
2
2 � � � kT1nk

2
2

...
. . .

...

kTn1k
2
2 � � � kTnnk

2
2

(11)

then the interconnection in Fig. 3 is internally mean-square stable.
Proof: Assume that the interconnection in Fig. 3 is internally

mean-square stable, it must be mean-square stable. LetX 2M+(
n )

be such that

X = X0 +

n

j=1

1

k=0

AkBjB
T
j A

T k
k�jk

2
s
kzjk

2
v

where

X0 =

1

k=0

n

j=1

AkBjB
T
j A

T k
kdjk

2
v
:

In this case,kzikv satisfies

kzik
2
v
= CiX0C

T
i +

n

j=1

D2
ijkdjkv

+

n

j=1

1

k=0

CiA
kBjB

T
j A

T k
CT
i +D2

ij k�ik
2
s
kzik

2
v
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Fig. 3. The multiloop feedback interconnection.

for i 2 f1; 2; . . . ; ng or in matrix form

kz1k
2
v

kz2k
2
v

...

kznk
2
v

= G(T )

k�1k
2
s
kz1k

2
v

k�2k
2
s
kz2k

2
v

...

k�nk
2
s
kznk

2
v

+ G(T )

kd1k
2
v

kd2k
2
v

...

kdnk
2
v

:

(12)

There is a unique and finite solution forkz1kv; kz2kv; . . . ; kznkv in
(12) iff

I � G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)

is invertible inM( n
+). A sufficient condition to guarantee this is

(10).

III. ROBUST CONTROL SYSTEM ANALYSIS

Let us add an external disturbance channel and an output channel to
(9) and call the resultant system̂T

xk+1 =Axk +B0v0 +

n

j=1

[Bjwj ]vj

z0 =C0xk +Dj0v0 +

n

j=1

[D0jwj ]vj

zi =Cixk +Di0v0 +

n

j=1

[Dijwj ]vj

i 2 f1; 2; . . . ; ng

vj = [�j(zj)]k (13)

wherew1; w2; . . . ; wn are mutually uncorrelated white noise pro-
cesses and�i 2 BBBSSS for i 2 f1; . . . ; ng with system inputzi; v0
is a white noise process with unit covariance. Denote

�
�
= fdiag(�1; �2; . . . ; �n): �i 2 BBBSSS; i 2 f1; . . . ; ng:

Definition 3.1: The system (13) is robustly stable in the mean square
sense with respect to� if for any given norm-bounded dynamic sto-
chastic perturbations�i 2 BBBSSS; i 2 f1; . . . ; ng, the multiloop inter-
connection in Fig. 3 is internally mean-square stable.

Theorem 3.2:The system (13) is robustly stable in mean square
sense with respect to the norm-bounded dynamic stochastic perturba-
tions inBBBSSS iff the following holds:

�(T ; �)
�
= �(G(T )) < 1

whereG(T ) is defined in (11) andT is the stochastic system by drop-
ping the disturbance channel and the output channelz0, i.e., the system
depicted in (9).

Proof: From mean-square small gain theorem, we know that

�[G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)] < 1

8�i 2 BBBSSS; i 2 f1; . . . ; ng (14)

is sufficient for (13) to be robustly stable in mean square sense.
Denote

�(T ; �) = max
� 2BBBSSS; 1�i�n

�[G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)]

(15)

then (14) is equivalent to

�(T ; �) < 1: (16)

Now, we need to prove that (16) is also a necessary condition. Con-
sider that

G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)

is a matrix of all positive elements, hence its spectral radius is its largest
eigenvalue [2, Ch. 8]. Hence, (16) is equivalent to

max
� 2BBBSSS; 1�i�n

�[G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
)] < 1:

Assume that (16) fails, i.e., there exists a set of�i 2 BBBSSS; i 2
f1; . . . ; ng such that

�[G(T ) diag(k�1k
2
s
; . . . ; k�nk

2
s
] 6< 1:

Since0 2 BBBSSS and�(�) is a continuous function of its arguments, there
must exist another set of̂�i 2 BBBSSS; i 2 f1; . . . ; ng such that

�[G(T ) diag(k�̂1k
2
s
; . . . ; k�̂nk

2
s
)] = 1

or

I � G(T ) diag(k�̂1k
2
s
; . . . ; k�̂nk

2
s
)

is singular. This implies that (12) will not have a unique solutionkzikvs
with respect to this set of̂�i 2 BBBSSS; i 2 f1; . . . ; ng. Therefore if (16)
fails, (13) is not internally mean-square stable for some�̂i 2 BBBSSS; i 2
f1; . . . ; ng. Hence, (13) is robustly stable in mean-square sense iff
(16) holds. In order to complete the proof, we need to show that the
quantity defined in (15) satisfies

�(T ; �) = �(G(T )):

Denote theith row ofG(T ) as[G]i�. Using [2, Cor. 8.1.31], we have

�(T ; �) = max
� 2BBBSSS; 1�i�n

max
e2

min
1�i�n;e 6=0

� [G]i� diag(k�1k
2
s
; . . . ; k�nk

2
s
)
e

ei

= max
e2

max
� 2BBBSSS; 1�i�n

min
1�i�n;e 6=0

� [G]i� diag(k�1k
2
s
; . . . ; k�nk

2
s
)
e

ei

� max
e2

min
1�i�n;e 6=0

max
� 2BBBSSS; 1�i�n

� [G]i� diag(k�1k
2
s
; . . . ; k�nk

2
s
)
e

ei

= max
e2

min
1�i�n;e 6=0

� [G]i�
e

ei

=�(G(T )):



494 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 3, MARCH 2002

Notice that the third inequality comes from the following standard re-
sult for multivariable functions:

max
y

min
x

f(x; y) � min
x

max
y

f(x; y):

The fourth equality comes from the maximization of a linear func-
tion with positive arguments. On the other hand,�i 2 BBBSSS; i 2
f1; . . . ; ng implies

�(G(T )) � �(T ; �):

Hence, we must have

�(T ; �) = �(G(T )) = �(G(T )):

Definition 3.3: The system (13) is said to have robust performance
with respect toBBBSSS if it is robustly stable in mean square sense and
for all norm-bounded dynamic stochastic perturbations�i 2 BBBSSS; i 2
f1; . . . ; ng, the output variance ofz0 in (13) is bounded

E1[kz0k
2] = kz0k

2

v
< 1:

Theorem 3.4:The system (13) has robust performance with respect
to BBBSSS iff

�(T̂ ; �̂)
�
= �(G(T̂ )) < 1

where

G(T̂ )
�
=

kT00k
2

2 � � � kT0nk
2

2

...
. . .

...

kTn0k
2

2 � � � kTnnk
2

2

(17)

and

�̂
�
= fdiag(�0; �1; . . . ; �n); �i 2 BBBSSS; i 2 f0; . . . ; ngg:

Proof: The robust stability of (13) in mean-square sense implies
the following equality holds8�i 2 BBBSSS; i 2 f1; . . . ; ng:

kz1k
2

v

kz2k
2

v

...

kznk
2

v

= G(T )

k�1k
2

s
kz1k

2

v

k�2k
2

s
kz2k

2

v

...

k�nk
2

s
kznk

2

v

+

kT10k
2

2

kT20k
2

2

...

kTn0k
2

2

(18)

and the output variance ofz0 can be computed as

kz0k
2

v
= kT00k

2

s
+ [ kT01k

2

s
kT02k

2

s
� � � kT0nk

2

s
]

�

k�1k
2

s
kz1k

2

v

k�2k
2

s
kz2k

2

v

...

k�nk
2

s
kznk

2

v

: (19)

The robust MSS is equivalent to8�i 2 BBBSSS; i 2 f1; . . . ; ng

det[I � G(T ) diag(k�1k
2

s
; . . . ; k�nk

2

s
)] > 0

and performance bounding is equivalent to

1� kz0k
2

v
> 0; 8�i 2 BBBSSS; i 2 f1; . . . ; ng:

The combination of those two is equivalent to8�i 2 BBBSSS; i 2
f0; . . . ; ng

det[I � G(T̂ ) diag(k�0k
2

s
; k�1k

2

s
; . . . ; k�nk

2

s
)] > 0

which is further equivalent to�(T̂ ; �̂) < 1. Hence, the claim
follows.

IV. CONCLUSION

The mean-square small gain theorem characterizes conditions for
the mean-square stability of a class of stochastic systems. This char-
acterization provides a method for robust control analysis for systems
with dynamic stochastic uncertainties. Both robust stability and per-
formance conditions can be characterized by the proposed small gain
theorem. This characterization will facilitate the output feedback con-
trol law synthesis. Further studies are needed to extend the mean-square
small-gain theorem to more general systems.
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