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e = 0.1, the upper bound = 0.198 could be concluded, which is in- Mean-Square Small Gain Theorem for Stochastic Control:

correct as the-metric betweerP andPF, is actually 1. Itis also noted Discrete-Time Case
that
Jianbo Lu and Robert E. Skelton
G, = [AI, N’,,]
1 3 1 b 3b Abstract—This note presents a small gain theorem in the mean square
= o ; as+ b € — PR 7 sense for multiple (interconnected) linear systems with multiplicative

noises. The small-gain theorem is proposed in terms of the spectral radius
of a matrix, whose elements are the squares dff, norms of the involved

wito = 117 andb = VT Thus forn = 0,1 = §,and _ [37ser elons, B obut sty g perfomance condions ar

e = 0.1, the Hankel norm of7,, is 0.0123, which implies thatls” exists

such thatF( (G, K) is stable, and 7 (G, k)|l < v for any~ such Index Terms—nternal mean square stability (IMSS), multiplicative

that1.0001 < ~+ < 61 = 5.0505, leading to the false conclusion noise uncertainty, robust control, stochastic control.

that the true planP is stabilized by such a controlléf. Actually the

nominal model as in (13) admits a very large stability margin for the I. INTRODUCTION

closed-loop system, but unfortunately,as in (13) is just not in the

set ofv-metric uncertainty stabilizable by the sadie In fact, a stable  The control problem for linear systems with multiplicative noises has

and causal interpolation functiah; can be obtained witHA, || < Peenshown applicable in many engineering problems [3], [6]. However

§ = 2¢/(1 + ¢*). MoreoverP, = F,(G, A,) is stabilizable by the the control synthesis problem, especially for output feedback, has not

same controlleds. However eithetP, is unstable (violating stability Yet been solved. The approach proposed in [5] might provide some

of P), orwno(1+4 P! P,) = 0 [violating continuity and smoothness ofinsight for this problem. This motivates the study for more general

P(jw)]. Thus Py, constructed using boundary interpolation and lineafyStem descriptions. Existing studies are usually dealing with single

fraction, is not equivalent td, which is not stabilized by the samelinear systems of multichannel multiplicative noises, and we consider

controller. Consequently, the uncertainty model is invalidated in spifa€ interconnections among multiple linear systems of multiplicative
of the fact that (11) is satisfied. noises. One application of this problem is to design robust control for
linear systems of multiplicative noises with respect to uncertainties of
the same type, or linear systems with structured white parameters.
Two stability concepts in the mean-square sense have been studied
here, namely, the usuaiean-square stabilitfMSS) and thenternal
mean-square stabilityMSS). A multiloop small gain condition is es-
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matrix (-) respectively® denotes Kronecker product, anek:(-) is the The augmented dynamics for the interconnection in Fig. 1 is
column stack of a matriy| - || is the Euclidean norm of a vectdt[:] ,

. . . ‘41 Blcg’wlk
denotes the usual expectation operator of a stochastic variable. For a Frqr = @
discrete time stochastic process= {zx }72, By Crws, Ay

)

E[:]2 lim B[] where@, = [21, x3,]" is the augmented system state. While the
T e T augmented dynamics for the interconnection in Fig. 2 is
445 is the Kronecker delta functio = 1if : = j and zero oth- Ay BiCowy,, | | Biuw,
erwise). The set of all discrete time stochastic processes with finit&x+1 = B.C 1 T+ B
variances is defined as 2tz o2 2102
, . o da,
vE Lz =1{2)20: ||zl is finite} . [l "} . (3)
('lk
. . . A 5
where the signal norm is defined fsflv = +/Ecol[|=[?]. Notice that (2) and (3) describe systems with multiplicative noises of

some structures, or systems witructured multiplicative noisesr
Il. STOCHASTICMODELS AND MEAN-SQUARE SMALL GAIN THEOREM  systems withstructured white parameter uncertainties.

Definition 2.2: The interconnection in Fig. 1 is said to be mean-
square stable if for any initial conditiafy, limg_—. E[;i'k:i'f] = 0,
whereiy, is the system state of (2). The interconnected system in Fig. 2
is said to be mean-square stable if for any uncorrelated white noise

Trp+1 = Azy, + [Bwi]vg, 2 = Cay, (1) processed; anddz, limyg o E[2.21] is finite.
It is not hard to prove that the mean-square stability of the system in
wherezr € R"~ is the system state; € R is the system output, Fig. 1 is equivalent to the mean-square stability of the system in Fig. 2.
v € R is the system input. Notice that there is a multiplier in  Now let's consider the condition for the mean-square stability.
the input channel, and” is said to have multiplicative noise if this  Theorem 2.3: The interconnection in Fig. 1 is mean-square stable
multiplier w,, is a white noise process. A linear system associated wig for any a; > 0 andas > 0 there existsX; € My (R"1) and

Consider a set of stochastic systefisEach elemenf of S is a
mapping from the signal spaeeto the signal space, i.e.,7: v — v.
T has the following state-space description:

T is denoted a¥’, whose state-space description is X, € M, (R"=) such that
g1 = Az + By, 2z = Cag, X1 =A X\ A] +Bi(>X>Cy B + 2B By,
, , , o , Xo = A2 XoA] + B2Ci X CY By + a1 B:B; . 4
i.e., T comes from7 by dropping the white noise: in the input ’ ahea PRt B e e @
channel. The following assumptions are made for each elefhasft Proof: The system in Fig. 1 is mean-square stable iff for any un-
S. correlated white noise processés and d., which are uncorrelated
Al)  The multiplierw = {w}7, is a scalar white noise processWith w1 andw> and have variances:, a2 € Ry, there exists a fi-
satisfying for allt > 0 andk > 0 nite X € My (R"#) satisfying the following:
A / T
Elwrw:] = Sk, E[wy] =0 ¥ = A X As
_ . - A As
which is called thestochastic multiplier of the systefn The B XL BY
stochastic multipliers of different elementsSrare uncorre- 12tz B
lated. By X T BT
A2) The initial statero of 7 is a normal random variable which a2 By BT
is uncorrelated withuz, andvy for all & > 0. + e (5)
A3) w; andv; are uncorrelated with each other for alb> 0. a1B2 B,

A4)  Alsadiscrete-time stable matrix, i.p(4) < 1. Partition.{ according to the dimensionsef andz- (the system states
For each elemerif in S, the system norm df is defined by of 7 and 7z, respectively) as

Xi X5

Xoi X
Under assumptions A3)A4), the following resultis easy to obtain. the (2 1) element of the above matrix obeying (5) satisfies the fol-
Lemma 2.1: Consider the stochastic system in (1)»lfe v with lowing:

||[v]lv # 0, then||z||lv = ||T|s||v]|v. LetT be the linear system asso-

ciated with the stochastic system then||7||s = ||T||=, where]| - |2 Xor = A X0 AL,

is the usualH> norm of a linear stable system. _ ) o )
Suppose;, T € S and consider the interconnection in Fig. 1. Letsing Kronecker product, this equation is equivalent to

A ll=llv
T|ls = max . - _
17l = max, lollv X =

7; be the system of the following state-space description forl, 2: (I — A1 © As)vee(Xar) = 0 (6)
21, =Aiw, +[Biwr, e, 21, = Cran, Sincep(4;) < 1 andp(42) < 1, hence
;L’2k+l :A.QiL‘Qk + [BZ’LUZk]Zlk 22, = Ozl’zk ﬂ(Al @Az) — /)(rh)/)(Az) <1

wherex; € R"*i is the system state and., is the state dimension of yhjch implies tha(7 — 4, © A.) is nonsingular, or the only solution
7;. Itis not hard to verify that for each > 0, if the initial statese1, is oy (6) is

uncorrelated withvs, , thenz2, is uncorrelated with, ; if the initial
statex., is uncorrelated withwy, , thenzy, is uncorrelated withs, . vec(Xy1) =0, or Xy =0.
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Therefore the mean-square stability of the system in Fig. 1 is equivalent
to the existence oKy € M, (R"*1) andX, € M, (R"=2) satisfying
4). [ |
Definition 2.4: The interconnection in Fig. 1 is said to be internally
mean-square stable if for any finite but uncorrelated white noise pro-
cessed; andd:, which are uncorrelated with the stochastic multipliers Ty
of 73 and7;, the signals:; andz, in Fig. 2 belong tov.
Lemma 2.5: Consider the interconnected system in Fig. 1, wheig 1. The single loop feedback interconnection.
T, T € S. The following statements are equivalent:

A 4

7,

iv) the system in Fig. 1 is mean-square stable; v
v) the system in Fig. 2 is internally mean-square stable; do T4
Vi) 71|l Z2]]s # 1.
Proof: If i) holds then there exist&’; and X, satisfying (4) by 22 21
Theorem 2.3. Considering vy
) T P dy
llzilly = CiX5C5

therefore,z; € v fori = 1, 2, i.e., i) = ii). Now we want to show Fig. 2. Input-output signals in the single loop feedback interconnection.
ii) = i). The following Lyapunov equation has a unique, finite and

positive—definite solutiord.; due to assumption A4) Theorem 2.7 (Muliloop Mean-Square Small Gain The-

L= A, L;AT + B;BT orem): Suppose in Fig. 3A;, A, ..., A, € §,and7 is a
' stochastic system with multiports
fori =1, 2. Leta;, «2 be the system states &f and7,. The covari-

ances ofe; andz- for the systemd; and7 satisfy the following: whar = Az + i [B,w;,]vj,
Xy =|ld2 4 2l5Li.  Xo=|ldi+ zs Lo ) =
Sincelld: + = |2 < [|d:[12 + ||=i]|2, henceX, € M, (R">) and is 2 =Chmet D [DijwsJ v i€ {12}
finite if ||z:||v is finite fori = 1, 2. Therefore i} i). Now assume =
that ii) is true. From (3), it is not hard to see thdt d»]” and:i are Vi =8 (z)]es JEAL2,....n} ©)
uncor_related. Hencéi is uncorrelated withe; (i = 1, 2), i.e., the wherez € R" is the system state, € Rforj € {1 ....n),
following equations hold: andw;, ws, ..., w, are mutually uncorrelated white noise processes
”Zl”;z, — ||’T1||Z(||d2||3 + ”22”3) which are also uncorrelated with;, A, ..., A,,. Denotel;; as the
2 2 2 9, transfer matrix of the system quadruple B;, C;, D;; for i, j €
2012 = 122 1di 2 + 1=0012)- ® (19 ..o}

A necessary and sufficient condition for the existence of finite and . 2 2
uniquel|z1 ||+ and|| zz ||+ to satisfy (8) is the norm condition iii). There- plG(T) diag(l|Adlls, .- [1Anll)] < 1 (10)
fore, i) < iii). N B \where

Define a unit ballBS in S as:BS = {A € S: ||Alls < 1}.f T4 R 9
is any element ilBS, the following question is natural to ask: what IZoallz - Tl
condition should be posed @ such that the interconnection in Fig. 1 o(7)2 . . . (11)
is mean square stable? That is, we want to find conditions such that a : ’ :
linear dynamic stochastic system will maintain MSS in the presence of Tnillz - || Tunlls
norm-bounded dynamic stochastic uncertaintieB.f The following ) o o
result provides an answer to this question. then the interconnection in Flg. 3is mterna_lly mean-square stable.

Theorem 2.6 (Mean-Square Small Gain Theorerfir any norm- Proof: Assume that the interconnection in Fig. 3 is internally

bounded dynamic stochastic systéinin BS, the interconnection in Mean-square stable, it must be mean-square stabl&. e/ (R"*)
Fig. 1 is mean-square stable jff>||s < 1. be such that

Proof: || Zz||s < 1implies thatiii) in lemma 2.5 is true, hence the o S, S e
sufficiency is obvious. Now we proceed to prove the necessity. Assume X=Xo+ Y > AB;Bi AT A 201
the interconnection in Fig. 1 is mean-square stable||Gutls > 1. J=1 k=0

Then there must exist@ € BS such that]|7:||s[|7z[ls = 1, one \here

of such7; can be constructed & = 75/||7z||2. This implies that

for this 77, there are no unique solutions fipr, ||v and||z2||v in (8). o N 4k T 4Tk 2

This contradicts that the interconnection is mean-square stable. Hence, Xo = ; ;A BBy AT lldslv-

I 72]ls < 1is needed to guarantee that the interconnection in Fig. 1 is -

mean-square stable for & € BS. B |n this case||z||v satisfies

Now we consider a multiloop feedback interconnection in Fig. 3. N

MSS and IMSS for the multiloop feedback interconnection can be smgi 12 = Cixoc! + Z D2 |1d; ]l

ilarly defined as in definition 2.2 and 2.4. Using i) and ii) in theore M ‘ = iy

2.5 one loop at a time leads to the following result. <
k

oo

Corollary of Lemma 2.5: The multiloop feedback interconnection + Z

Adllzllzly
in Fig. 3 is mean-square stable iff it is internally mean-square stable.

C.A*B,Bf AT ¢l + D'f])
0

7=1
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Fig. 3. The multiloop feedback interconnection.

for: € {1, 2, ..., n} or in matrix form
[ENTHIE [EAF
22l A HIE RS
=a(7) _ +&(7)
1z lI% [l I
(12)
There is a unique and finite solution e, ||v, ||z2(v, ---. ||zx]]v in

(12) iff

I—6(T) diag(l| A<,

is invertible in M (R} ). A sufficient condition to guarantee this is
(20). [ |

I1l. ROBUST CONTROL SYSTEM ANALYSIS

Let us add an external disturbance channel and an output channel to

(9) and call the resultant systein

n
i1 = Awi + Bovoy + Y_[Bjwj,uj,
j=1

20, = Coxr, + DJU vo,, + Z[Dojwjklvjk
=1
zi, = Cixe + Diovo,, + Z[DU“"M]”M
j=1
i€{l,2,...,n}

vj = [Aj(z)]k (13)

wherews:, wa, ..., wy
cesses andy; € BS fori € {1, ..., n} with system input:;; vo
is a white noise process with unit covariance. Denote

A 2 {diag(A1, As. ..., An): A; € BS,

t€{1,..., n}

Definition 3.1: The system (13) is robustly stable in the mean square

sense with respect tA if for any given norm-bounded dynamic sto-
chastic perturbationd; € BS, i € {1, ..., n}, the multiloop inter-
connection in Fig. 3 is internally mean-square stable.

Theorem 3.2: The system (13) is robustly stable in mean square
sense with respect to the norm-bounded dynamic stochastic perturba-

tions in BS iff the following holds:

o(T, A) 2 p(G(T)) < 1

are mutually uncorrelated white noise pro-

493

whereG(7) is defined in (11) and" is the stochastic system by drop-
ping the disturbance channel and the output channeéle., the system
depicted in (9).
Proof: From mean-square small gain theorem, we know that
plG(T) diag(| A<, - 1AL ]ID)] < 1

VA; €BS,ie{l, ...

.....

,n} (14)
is sufficient for (13) to be robustly stable in mean square sense.
Denote

o(T, A) = max )]
A;EBS,1<i<n
(15)
then (14) is equivalent to
(T, A) < 1. (16)

Now, we need to prove that (16) is also a necessary condition. Con-
sider that

is a matrix of all positive elements, hence its spectral radius is its largest
eigenvalue [2, Ch. 8]. Hence, (16) is equivalent to

/\[G(T) dchg(||A1|| ||An||§)] <1

nax
A;EBS, 1<

Assume that (16) fails, i.e.,
{1, ..., n} such that

AG(T) diag(]| Ay

there exists a setof € BS.i €

AP # L

Sincel) € BS andX(-) is a continuous function of its arguments, there
must exist another set&f; € BS, i € {1, ..., n} such that

Na(T) diag(JA4 3, - ... [1AulD] =

or

I —G(T)diag(||Ay]|Z, ...,

Anlls

is singular. This implies that (12) will not have a unique solutjer]|+s

with respect to this setak, € BS, i € {1, ..., n}. Thereforeif (16)
fails, (13) is not internally mean-square stable for salmec BS, i €

{1, ..., n}. Hence, (13) is robustly stable in mean-square sense iff
(16) holds. In order to complete the proof, we need to show that the
quantity defined in (15) satisfies

AT, A) = p(&(T)).

Denote theth row of G(7') as|[G]i«. Using [2, Cor. 8.1.31], we have

(T, A) = max max min
A;EBS, 1<i<n CGRi 1<i<n, e;#0
L 5 e
[G]ix diag([|Axlls, .- nlls) —
7
= max ma min
<€R% A;€BS, 1<,<n1<,<n e 20
e
6]+ (1],
e
< max

tER” l<L<1L ezioA EBS l<L<1L

(6l ding(I A1 12 ...

max min
(’ER”’ 1<i<n, e; #0

{“‘L* T}

A(G(
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Notice that the third inequality comes from the following standard re- The robust MSS is equivalentA; € BS, i € {1, ..., n}
sult for multivariable functions:

det[I — G(T) diag( A1 ]IS .. |AL])] > 0

max min f(z, y) < min max f(z, y).
y ¢y

and performance bounding is equivalent to
The fourth equality comes from the maximization of a linear func- 1—|lzlls >0, VA, €BS,ie{l,...,n}
tion with positive arguments. On the other hankl, € BS,: €

{1..... n} implies The combination of those two is equivalent¥a\; € BS, i €

{0, ..., n}
p(G(T)) < o(T, A). det[I — G(T ) diag(||Aollz. IA[Z. ... [|AL]2)] >0

which is further equivalent tas(7, A) < 1. Hence, the claim

Hence, we must have follows n

o(T, A) = p(G(T)) = XG(T)). IV. CONCLUSION

The mean-square small gain theorem characterizes conditions for

B the mean-square stability of a class of stochastic systems. This char-

Definition 3.3: The system (13) is said to have robust performancg:terization provides a method for robust control analysis for systems
with respect taBS if it is robustly stable in mean square sense angith dynamic stochastic uncertainties. Both robust stability and per-

for all norm-bounded dynamic stochastic perturbatidnse BS. i €  formance conditions can be characterized by the proposed small gain

{1, ..., n}, the output variance of in (13) is bounded theorem. This characterization will facilitate the output feedback con-
trol law synthesis. Further studies are needed to extend the mean-square
Eoo[||z0]’] = ||20])2 < 1. small-gain theorem to more general systems.
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e

[]
=2
=

ITwollz - N Tonll3

A 2 {diag(Ao, A1, ..., A,), A, € BS, i € {0, ..., n}}.

Proof: The robust stability of (13) in mean-square sense implies
the following equality hold¥ A; € BS, i € {1, ..., n}:

=117 A=l I T5oll2
(B[ A5 ]1=21v 1 Z20ll3

=a(7) _ + _ (18)
[zl A EAE I Toll3

and the output variance ef, can be computed as

lzolls = 1 Tooll2 + [IToe ]2 1 To2ll2 -+ [|Toall2]
A= 03
Ao 3] 225

(19)
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