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Abstract

A new method for integrated design of passive and active elements is presented. Rather
than the existing qualitative selection of parameters for passive elements, a quantitative ap-
proach is proposed which finds optimal active and passive parameters with respect to an
H2/H∞ performance requirement. This new approach automatically yields passive designs
when the given performance limits are high enough, and active (hybrid) designs when the
given performance constraints are stringent. Furthermore, our algorithm finds that the spe-
cial performance requirement (the peak of the frequency response) which cannot be satisfied
by any passive design. Hence, this paper shows how to determine WHEN is control required,
rather than assuming a priori that it is or it is not required. A simple design method given
herein yields any one of passive, active and hybrid designs, depending only on the level of
the performance constraints that are specified in the statement of the problem.

1 Introduction

Some research effort in Japan and the USA are focused on control techniques to suppress the
vibration of structures induced by earthquake, high winds and moving loads. Those techniques
can be classified into passive control, active control and hybrid control, among other labels.

Passive control has been intensively used, including base isolation, friction dampers, passive
bracing systems, tuned-mass dampers, visco-elastic dampers, etc. The advantage of passive
control systems lies in their ability to absorb vibrational energy without the requirement of
power or sensing, and their reliability and robustness (unconditionally stable system). How-
ever the passive devices are difficult to tune after the structure’s construction, and in some
cases (for example the tall structures), passive control is not sufficient to meet the performance
requirement.

Active control uses external power and sensing to add damping or force to structures through
feedback. The advantages of active control include the ability to control high order vibration
modes, automatic tunability, working for stringent performance requirements. However the
large power consumption and the question of actuator reliability in high loading and adverse
operation conditions are factors preventing it from wide acceptance. The active control used in
civil structure application has been studied intensively 12,10,5. Although the implementations of
active control can be found in many aerospace structures, the implementations in civil structures
are very recent 11. Much can be learned from the aerospace experience that will benefit the civil
applications.

∗Sponsored by NSF CMS-9403592.
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Hybrid control systems combine passive and active control systems and overcome the weak-
nesses of both systems. The combination of base isolation and an active device is an example
of hybrid control systems 8,7. The control effort often combats certain dynamics of the struc-
ture. These dynamics could have been made “easier to control” by making certain structural
modifications through passive control. Only those dynamics which can not be accommodated
by passive control are left for active control action. Hybrid control reduces the control force
compared with active control and improves control effectiveness compared with passive control.
This is the motivation for hybrid control.

The commonly used method in hybrid control is a cascade design procedure. The passive
control is first designed by specifying devices or damper types and their parameters, then an
active control algorithm is synthesized based on the augmented passive control system. It is a
well-known fact that the structure and its control design problems are not independent 9. Hence
passive control is not independent of active control. Integrating passive parameter design with
active control design will improve control effectiveness and energy consumption.

In this paper, we assume both the passive and active control devices are available for design.
In our example, the passive devices are damper and stiffness devices. The active control devices
could be an active brace system, tendon system and active mass drive system. We want to
design passive parameters and active control algorithm such that the hybrid controlled system
meets a stringent performance requirement. An ideal approach for this problem is to simultane-
ously design the passive and active parameters to optimize the performance index. However this
approach is far from computationally tractable due to the complex nature of the optimization.
The approach used here follows the philosophy introduced in Grigoriadis, et. al. 4. Here in the
first step a controller is designed for a set of nominal structured parameters. The closed loop
system for this controller defines the desirable performance, even though the controller may be
terribly unattractive (uses too much control energy, etc.). Then a second step in the design
process optimizes (simultaneously) the structure and control parameters. This is a nonconvex
(hard) optimization problem, but the trick that makes the method effective is to add a con-
straint to make this constrained optimization problem convex. This paper adds constraint to
match the state space matrices of the involved transfer matrix whose frequency response peak
needs to be limited. This method allows the mass, damping and stiffness matrices to contain
free design parameters. The match constraint preserves the dynamic properties for the involved
transfer function obtained in the first step which defined the “ideal” performance by an original
controller. The variation of this design theme, which we have called “Optimal Mix of Passive
and Active Control”, include different choice of control design criterion (that defines the “ideal”
performance). Grigoriadis, et. al. 4 proposes a computationally tractable iteration to perform
the integrated design, where the active control energy is minimized subject to an upperbound
constraint on output variances. When this solution yields zero control energy, then the design
is completely passive. When the design yields nonzero control energy, then the selected per-
formance upperbound cannot be achieved with any passive design. This paper also minimizes
control energy, but constrains the peak value of the frequency response, instead of constraining
the output variances.

This paper is organized as follows. Section 2 gives the mathematical description of the hybrid
control problem, a brief discussion about H2 and H∞ norms and their upperbounds, and the
mixed H2/H∞ control problem. In section 3, the optimal hybrid control problem for systems
with equivalent features are studied. An iterative but convergent procedure for using the results
in section 3 to general systems is studied in section 4. An example is included in section 5.
Section 6 concludes the paper.
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The following notations are used in this paper. (·)T , (·)+, (·)−1, tr(·) denote the transpose,
Moore-Penrose generalized inverse, inverse and trace operations of a matrix (·) respectively. A

n×n unit matrix is denoted as In×n.
SSR
= is short for state space realization of a transfer matrix.

A positive definite matrix X is denoted as X > 0 and X < 0 is defined as −X > 0. vec(·)
operator stacks the columns of a matrix. ⊗ denotes the Kronecker product operation between
two matrices.

2 Mathematical Description of Optimal Hybrid Control

For small motions, civil structures can be described by linear lumped parameter systems. Con-
sider an initial designed structure, which is designed from some preliminary considerations

E0(ẋ − B1w) = A0x + B2u

z1 =
[

xT F T
1 ẋT F T

2

]T
(1)

z2 = C2x + D22u

y =
[

xT MT
1 ẋT MT

2

]T
+ Dv

where z1 and z2 are two kinds of performance variables which are used for two different perfor-
mance requirements, y is the measurement, w is the external disturbance applied to the structure
(e.g., the earthquake excitation), and v is the sensor noise. We have the following assumptions
for this initial structure due to physical considerations

(A1) The system (1) has independent measurements, i.e., M1 and M2 have full row rank.

(A2) The system (1) has independent actuators, i.e., B2 has full column rank.

(A3) E0 is inevitable.

Assume a structure parameter (passive control) p

p
△
=

[

p1 p2 · · · pn

]T
(2)

which falls within an admissible set

P
△
= {

[

p1 p2 · · · pn

]T
: p−i ≤ pi ≤ p+

i , i = 1, 2, · · · , n}

modifies the initial structure (1) into the following structure

E(p)(ẋ − B1w) = A(p)x + B2u (3)

where E(·) and A(·) are linear functions of the structure parameter (passive control) p of the
following forms

E(p) = E0 +
p

∑

i=1

piEi, A(p) = A0 +
p

∑

i=1

piAi.

We assume

(A4) E(p) is inevitable for all possible p ∈ P .
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Besides the structure parameter modification, the following active control K is applied to
the initial structure (1)

ẋc = Acxc + Bcy

u = Ccxc + Dcy (4)

We have the following assumptions for the system (1) and the control (4)

(A5) If Dc 6= 0, then M2 = 0,D = 0.

(A6) If D 6= 0,M2 6= 0, then Dc = 0.

Notice that the assumptions (A5) and (A6) guarantee the finiteness of the H2 norm from w to
z1 of the system defined later in (5).

The hybrid control system uses (2) and (4) to control the initial structure (1), the corre-
sponding closed loop system is called the hybrid closed loop system, which is of the following
form

ẋ = A(K, p)x + B(K)w

z1 = C1(K, p)x + D1w (5)

z2 = C2(K)x

where w denotes the disturbances applied to the closed loop system, x is the augmented state,
i.e.

w =

[

w
v

]

, x =

[

x
xc

]

.

If (A5) holds, then the system matrices of the hybrid closed loop system (5) are

A(K, p) =

[

E(p)−1(A(p) + B2DcM1) E(p)−1B2Cc

BcM1 Ac

]

B(K) =

[

B1 0
0 0

]

C1(K, p) =

[
[

F1 0
]

F2A(K, p)

]

D1 =







0 0

F2

[

B1

0

]

0







C2(K) =
[

C2 + DcM1 D22Cc

]

.

If (A6) holds, then the system matrices of the hybrid closed loop system (5) can be written as

A(K, p) =







E(p)−1A(p) E(p)−1B2Cc
[

BcM1

M2E(p)−1A(p)

]

Ac + Bc

[

0
M2E(p)−1B2Cc

]







B(K) =







B1 0

Bc

[

0
M2B1

]

BcD






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C1(K, p) =

[

F1 0
F2E(p)−1A(K, p) F2E(p)−1B2Cc

]

D1 =

[

0 0
F2B1 0

]

C2(K) =
[

C2 D22Cc

]

.

For the hybrid closed loop system (5), denote the transfer matrix from w to z1 as T1(K, p)
and from w to z2 as T2(K, p).

The H∞ norm of T1(K, p) represents the peak magnitude (peak singular value) of the fre-
quency response of T1(K, p), which is denoted as ‖T1(K, p)‖∞. ‖T1(K, p)‖∞ can also be used to
denote the square root of the energy amplification factor of the response z1 with respect to all
possible inputs w

‖T1(K, p)‖2
∞ = max

w

{
energy of z1

energy of w
: w has nonzero but finite energy}

The H2 norm of T2(K, p) is defined as the energy of the output z2 with respect to a unit
intensity white noise signal w.

The H∞ norm of T1(K, p) does not exceed γ1 if and only if there exists a P = P T > 0 such
that 1







A(K, p)P + PAT (K, p) B(K) PCT (K, p)
BT (K) −I DT

C1(K, p)P D1 −γ2
1I






< 0. (6)

The H2 norm of T2(K, p) does not exceed γ2 > 0 if and only if there exists a Q = QT > 0
such that 1

[

A(K, p)Q + QAT (K, p) B(K)
BT (K) −I

]

< 0

tr[C2(K)QCT
2 (K)] < γ2

2 . (7)

For the fixed parameter p, finding the active control K to satisfy (6) or (7) can be solved
by the well-known H∞ control or H2 control theory (Notice that the assumption (A5) and (A6)
guarantee that the H2 norm of T2(K, p) of the hybrid closed loop system is finite). However,
finding a controller K to simultaneously satisfy both (6) and (7) is an open problem and it
may be intractable computationally. For computational tractability in the LMI framework, a

single Lyapunov matrix X
△
= P = Q is sought in the above conditions 2. We call this matrix X

the H2/H∞ common Lyapunov matrix. This simplification leads to a performance upperbound
for both H2 and H∞ norms of the hybrid closed loop system (5). Denote the corresponding
upperbounds for ‖T2(K, p)‖2 and ‖T1(K, p)‖∞ as

‖T2(K, p)‖2, ‖T1(K, p)‖
∞

.

Instead of considering the exact H2/H∞ control problem stated in section 2, which can not be
solved by existing methods, we consider the following well-studied problems.

H2/H∞ Optimal Active Control: For a fixed plant parameter p, solve for the active
controller K from the following optimization problem

γa(p) = min
K

{‖T2(K, p)‖2 : ‖T1(K, p)‖
∞

≤ γ1}.
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Theorem 2.1: For a fixed passive control p, the H2/H∞ Optimal Active Control can be
transferred into a convex optimization problem. Hence the optimal value γa(p) is the global
minimal of the optimization.

Proof: See 2.
The solution of the above problem can be obtained by using the LMI control toolbox 3.
If we want to find both the passive parameters and the active control parameters such that

the performance defined in the above H2/H∞ Optimal Active Control problem is minimized,
then we are considering the following problem.

H2/H∞ Optimal Hybrid Control: Simultaneously solve for the active controller K and
the plant parameter p from the following optimization problem

γh = min
K,p

{‖T2(K, p)‖2 : ‖T1(K, p)‖
∞

≤ γ1}.

Remark: : If we choose the output variable z2 as the active control variable u and the
solution for H2/H∞ Optimal Hybrid Control problem achieves γh = 0, then this solution is a
pure passive solution. In practice if γh is smaller enough, then we think that the corresponding
solution is a passive solution.

In the following section, we solve the H2/H∞ Optimal Hybrid Control problem by con-
straining the system matrices of the transfer matrix T1(K, p) to be the same before and after
the hybrid control.

3 Optimal Hybrid Control for Systems with Equivalent Features

For a given passive control p ∈ P and a given active control K, the transfer matrix from w to
z1 of (5) can be expressed as the following state space realization

T1(K, p)
SSR
=

[

A(K, p) B(K, p)

C1(K) D1

]

, (8)

meaning that
T1(K, p) = D1 + C1(K)(sI − A(K, p))−1B(K, p).

Given two active and passive control pairs (K̃, p̃) and (K, p), T1(K̃, p̃) is said to be system
equivalent to T1(K, p) if those two have the same system matrices, i.e.

A(K̃, p̃) = A(K, p)

B(K̃) = B(K)

C1(K̃, p̃) = C1(K, p).

For the given active and passive control pair (K, p), denote the whole class of system equiv-
alent systems as E(K, p). Notice that any element in E(K, p) has the same H∞ norm. In the
following, without loss of generality, we consider the system equivalent class for p = 0 (E(K, 0)),
i.e., all transfer matrices T1(K̃, p̃) whose system matrices are the same as T1(K, 0). We have the
following result.

Lemma 3.1: Let K be given. Consider any given pair (K̃, p)

6



(i) If (A5) holds, then T1(K̃, p) belongs to E(K, 0) if and only if

Ãc = Ac, B̃c = Bc

B2C̃c = B2Cc +
p

∑

i=1

EiE
−1
0 B2Ccpi (9)

B2D̃cM1 = B2DcM1

+
p

∑

i=1

[EiE
−1
0 (A0 + B2DcM1) − Ai]pi. (10)

(ii) If (A6) holds, then T1(K̃, p) belongs to E(K, 0) if and only if

Ãc = Ac, B̃c = Bc

B2C̃c = B2Cc +
p

∑

i=1

EiE
−1
0 B2Ccpi

p
∑

i=1

[EiE
−1
0 A0 − Ai]pi = 0.

Proof: See Lu and Skelton 6.
Remark: We are interested in a set of the closed loop systems T1(K̃, p̃) whose H∞ norms

are bounded by the same γ1. However, this set is very complicated to characterize. The system
equivalent class E(K, p) is a subset of this set.

The Optimal Hybrid Control over the equivalent class E(K, 0) for a given controller K is to
solve for (K̃, p) from the following optimization problem

γh = min
K,p

{‖T2(K̃, p)‖2 : T1(K̃, p) belongs to E(K, 0)}. (11)

The following theorem provides the solution for this optimization.
Theorem 3.2: For a given controller K of the form (4) or

K
SSR
=

[

Ac Bc

Cc Dc

]

and a H∞ performance level γ1 > 0, let X0 be the H2/H∞ common Lyapunov matrix defined
in section 2. Then the optimal solution over the output equivalent class E(K, 0) is a convex,
constrained quadratic optimization problem with respect to the plant parameters p, and reduce
specifically to solving the following optimization problem

γh = min tr[a(p)T (X0 ⊗ I)a(p)] (12)

subject to p ∈ P , N̂p = 0

where

a(p) = vec(W0) + Ŵp

Ŵ = [vec(W1) vec(W2) · · · vec(Wn)]

N̂ = [vec(N1) vec(N2) · · · vec(Nn)].

If we denote
Ui = EiE

−1
0 B2Cc

Wi, Ni (i = 1, 2, · · · , n) can be computed from the following for different cases
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(i) If (A5) holds, then

W0 = [C2 + D22DcM1 D22Cc]

Wi = [D22B
+
2 ViM

+
1 M1 D22B

+
2 Ui]

Ni =

[

(I − B2B
+
2 )Ui

B2B
+
2 ViM

+
1 M1 − Vi

]

with Vi = EiE
−1
0 (A0 + B2DcM1) − Ai.

Assume popt is the optimal solution of (12), then the optimal active controller Kopt has
the following state space form

Kopt
SSR
=

[

Ac Bc

Cc + B+
2

∑n
i=1 Uipopt

i
Dc + B+

2

∑n
i=1 ViM

+
1 popt

i

]

.

(ii) If (A6) holds, then

W0 =
[

C2 D22Cc

]

Wi =
[

0 D22B
+
2 Ui

]

Ni =

[

(I − B2B
+
2 )Ui

EiE
−1
0 A0 − Ai

]

.

Assume popt is the optimal solution of (12), then the optimal active controller has the
following state space form

Kopt
SSR
=

[

Ac Bc

Cc + B+
2

∑n
i=1 Uipopt

i
0

]

.

Proof: The proof can be done by using lemma 3.1 and some algebraic manipulations. Detail
can be found in Lu and Skelton 6.

In the following section, the optimal hybrid control problem for general systems is solved by
using the result in theorem 3.2 at one step of an iterative procedure.

4 Optimal Hybrid Control for General Systems

An algorithm for solving the Optimal Hybrid Control problem considered here could be summa-
rized as follows. At each step, two tasks are performed. In the first task, the optimal performance
is sought by solving the mixed H2/H∞ control problem for passive control fixed at the previous
step; in the second task, an optimal hybrid control design is performed to match the system
matrices of the previous step. Individually, each of those two tasks provides a global optimal
solution, while the sequential combination of those two tasks will only provide a locally optimal
solution. However the convergence of this sequential combination is guaranteed.

Iterative Algorithm

Step 1 Set k=0. Pick an initial passive control pk ∈ P and formulate the state space system
matrices as in (2).
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Step 2 Find an active control to solve

γk
a = min

K
{‖T2(K, pk)‖2 : ‖T1(K, pk)‖

∞
< γ1}

and denote the globally optimal active control as Kk. For this Kk, denote Xk as the
H2/H∞ common Lyapunov matrix.

Step 3 For the passive control pk, the active control Kk and Xk obtained in step 2, solve

γk
h = min{‖T2(K, p)‖2 : T1(K, p) ∈ E(Kk, pk)}.

Notice that A(p) and E(p) can be written as

A(p) = A(pk) +
p

∑

i=1

Ai∆pi, E(p) = E(pk) +
p

∑

i=1

Ei∆pi

where p ∈ P and ∆p = p − pk. This implies that the dependence of A(p) and E(p) on
p can be transformed into the dependence on ∆p. Then the above optimization can be
transformed into the following

γk
h = min{‖T2(K,∆p)‖2 : T1(K,∆p) ∈ E(Kk, 0)}.

This problem is solved by theorem 3.2. Denote the globally optimal passive control as
pk+1.

Step 4 if |γk
a − γk

h| ≤ ǫ (where ǫ is a given tolerance), then stop. Otherwise, set k = k + 1 and
go to Step 2.

Theorem 4.1: The above iterative algorithm converges to at least a locally optimal solution.
Proof: See Lu and Skelton 6.

5 Example

Consider a 5 story building shown in Figure 1 (a). For small motion, the lateral vibration can
be characterized by

M0(q̈ + B1w) + D0q̇ + K0q = B2u

where

M0 = diag(m5,m4, · · · ,m1)

D0 =















d50 −d50

−d50 d50 + d40 −d40

−d40 d40 + d30 −d30

−d30 d30 + d20 −d20

−d20 d20 + d10















K0 =















k50 −k50

−k50 k50 + k40 −k40

−k40 k40 + k30 −k30

−k30 k30 + k20 −k20

−k20 k20 + k10















.
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The natural damping and stiffness might not be enough for the building to adequately
suppress the vibrations caused by earthquakes. We are allowed to use hybrid control to control
the vibration. The passive control can add damper and stiffness devices between floors and
between the 1st floor and the ground, see (b) of Figure 1. Denote di, ki as the damping and
stiffness coefficient of the passive device between the ith floor and (i−1)th floor of the building,
and the passive control parameters are denoted by

p = [k5, · · · , k1, d5, · · · , d1]
T .

Hence the passive control system can be expressed in (3), where

E0 =

[

I 0
0 M0

]

, A(p) =

[

0 I
−K(p) − K0 −D(p) − D0

]

where the damping matrix D(p) and the stiffness matrix K(p) can be written as the following
linear functions of p

D(p) =















d5 −d5

−d5 d5 + d4 −d4

−d4 d4 + d3 −d3

−d3 d3 + d2 −d2

−d2 d2 + d1















K(p) =















k5 −k5

−k5 k5 + k4 −k4

−k4 k4 + k3 −k3

−k3 k3 + k2 −k2

−k2 k2 + k1















.

Notice that qi here denotes the displacement of the i-th floor relative to the ground.
The active control devices are chosen as tendon systems ( Figure 2 (a) ) or the active brace

systems (Figure 2 (b) ). A mathematical simplification is depicted in Figure 2 (c) where
u1, u2, · · · , u5 are the control variables.

Combining the passive modification as in Figure 1 and the active control as in Figure 2, we
obtain a hybrid control system which has the form (5).

In the following discussion, all the physical parameters are normalized to simple numbers
such that the discussion emphasizes the mechanism of the method. The system state is

x(t) = [qT (t) q̇T (t)]T

where
q(t) = [q5(t) q4(t) · · · q1(t)]

T

denotes the displacements relative to the ground of all the floors of the building and

B1 =

[

0
B1

]

, B2 =

[

0
B2

]

with

B1 =















1
1
1
1
1















, B2 = I5×5.
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The hybrid control objective is to limit the interstory lateral drift and the absolute accel-
eration of each floor, and minimize the control energy. The interstory lateral drift is defined
as

qis(t) =











1 −1
1 −1

1 −1
1 −1











q(t)

while the absolute acceleration vector of the building is

q̈a(t) = q̈(t) + B1q̈g(t).

We choose qis(t) and q̈a(t) as H∞ performance variables, i.e.

z1(t) = [qT
is(t) q̈T

a (t)]T .

This is equivalent to limiting the peak value of the frequency response of T1(K, p) or the maxi-
mum energy of the output response z1 with respect to all inputs w having unit energy bound.

The H2 performance variable is chosen as the active control u(t). Hence the mixed H2/H∞

control problem is to find a minimum energy control K for white noise earthquakes and at the
same time limit the energy amplification factor associated with interstory drift and absolute
accelerations. Hence the H2/H∞ Optimal Hybrid Control finds the passive control parameters
ki and di (i = 1, 2, · · · , 5) plus the active controller K to achieve the H2/H∞ performance.

Notice that the colored (non-white) earthquake excitation can also be cast in the frame work
of this paper by some modification. Colored signals with known spectrum can be generated
by sending a white noise to a linear filter (for example, the Kanai-Tajini spectrum earthquake
signal). Hence for non-white earthquake signal w(t) = q̈a(t), we can find a filter F (s) and a
white noise v(t) such that

w(s) = F (s)v(s).

Then in the mixed H2/H∞ control, instead of considering the transfer matrix T2(K, p) from w
to z2, we should consider the transfer matrix from v to z2, i.e., T2(K, p)F (s).

If we impose a small performance bound on limiting the energy amplification factor in channel
z1, the minimal active control energy might still be zero. If we minimize active control energy
and at the same time bound energy amplification factor in channel z1 tightly enough, then the
minimal active control energy must not be zero. The sensor measurement here is taken as the
displacement of each floor and the rates of the first, third and the fifth floors.

The initial structure parameters are

ki0 = 0.5, di0 = 0.01414, mi = 1, i = 1, 2, · · · , 5.

Due to the implementation limitation, the stiffness ki and the damping di of the passive
control must fall within the physically realizable region. The following bounds characterize the
admissible stiffness and damping

0 ≤ ki ≤ 0.5, 0 ≤ di ≤ 9di0, i = 1, 2, · · · , 5,

We first study the passive control problem, i.e., we want to know the smallest γ1 yielding
passive design.
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For γ1 = 1000, the Optimal Passive Control leads to the following parameters
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The distribution of the passive control along the floors is shown in Figure 3. In this case, the
active control energy with respect to unit intensity white noise earthquake is smaller enough
(less than 0.0002), we could think this as a passive control solution.

Now consider a tighter H∞ bound. Let γ1 = 10. Without passive control (i.e., the initial
structure), a mixed H2/H∞ controller K0 is first designed by solving the H2/H∞ Optimal Active
Control problem. The active control energy of this controller with respect to a unit intensity
white noise earthquake is

‖T2(K
0, 0)‖2

2 = 0.5694.

Now we add the hybrid control. For the convergence stopping criterion ǫ = 10−2, the algorithm
proposed in section 4 converges after 98 iterations (see Figure 4). The optimal passive design
are obtained as
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The distribution of the passive control parameters and active control energies along the floors
of the building is shown in Figure 5. The corresponding active control energy with respect to a
unit intensity white noise earthquake is

‖T2(K, popt)‖
2
2 = 0.3729

i.e., the hybrid control reduces active control energy by 35%, or say the control action of the
35% active control energy is performed by the passive damping and stiffness devices.

6 Conclusion

This paper provides an iterative procedure to find the optimal passive control parameters and
the active control parameters. The performance used here is the so-called mixed H2/H∞ one.
Since the H∞ norm can be used to describe the system response energy amplification factor,
the peak value of its frequency response, hence incorporating H∞ norm performance in hybrid
control is of practical significance. Also notice that a smaller H∞ norm for the closed loop
system implies the good robustness with respect to certain unmodeled dynamics in the system.

Our example here quantitatively shows that the optimal hybrid control for seismic excitation
requires as small stiffness as possible and as large damping as possible at the building base. The
large active control energy should be placed on the locations where the stiffnesses are small, and
the small active control energy should be placed on the locations where the stiffnesses are large.
Those are active controller configurations to save active control energy consumption and at the
same time to achieve certain performance requirements together with the passive control. The

12



hybrid control reduces significantly the control power consumption (in our example, %35 energy
reduction is achieved).
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Figure 1: Passive control.
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Figure 2: Active control.
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Stiffness Damping

Figure 3: Distribution of the optimal passive control parameters (stiffness and damping) along
the floors.
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Figure 4: The iteration convergence study. The upper plot: the H2 norm (dashed line) and its
upperbound (solid line) converge after 98 iterations for a tolerance of ǫ = 10−2. The lower plot:
the H∞ norm (dashed line) and its upperbound (solid line).

17



Stiffness Damping Control Energy

Total energy =0.3729

Figure 5: Distribution of the passive control parameters (stiffness and damping) and active
control energy along the floors.
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