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Iterative Identification and Control Design Using
Finite-signal-to-noise Models *

ROBERT E. SKELTON AND JIANBO LU f

ABSTRACT

In this paper, a model is said to be wvalidated for control design if using the model-
based controller, the closed loop performance of the real plant satisfies a specified
performance bound. To improve the model for control design, only closed loop re-
sponse data is available to deduce a new model of the plant. Hence the procedure
described herein involves three steps in each iteration: (i) closed loop identification;
(i1) plant model extraction from the closed loop model; (iii) controller design. Thus
our criteria for model validation involve both the control design procedure by which
the closed loop system performance is evaluated, and the identification procedure by
which a new model of the plant is deduced from the closed loop response data. This
paper proposes new methods for both parts, and also proposes an iterative algorithm
to connect the two parts. To facilitate both the identification and control tasks, the
new finite-signal-to-noise (FSN) model of linear systems is utilized. The FSN model
allows errors in variables whose noise covariances are proportional to signal covari-
ances. Allowing the signal to noise ratios to be bounded but uncertain, a control
theory to guarantee a variance upper bound is developed for the discrete version of
this new FSN model. The identification of the closed loop system is accomplished by
a new type of g-Markov Cover, adjusted to accommodate the assumed FSN structure
of the model. The model of the plant is extracted from the closed loop identification
model. This model is then used for control design and the process is repeated until
the closed loop performance validates the model. If the iterations produce no such
a controller, we say that this specific procedure cannot produce a model wvalid for
control design and the level of the required performance must be reduced.

Key words: robust control, system identification.
NOTATION

In this paper, R and IR, denote the sets of real and positive real numbers.
diag(-) is the diagonal matrix whose elements come from the vector (-). ddiag(-)
is the diagonal matrix whose elements come from the diagonal of the matrix
() (using Matlab commands, ddiag(-) is the same as diag(diag(-))). {(")i;}
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represents a matrix whose (i, j)-element is (-);;, E; is a square matrix with 1
at its (4,7)-location, and 0 at all the other locations. ® denotes the standard
Kronecker product. A(-) is the largest eigenvalue of a matrix (-). &£, is the
steady state expectation operator.

The script capital letters are used to represent the dynamical systems, P
and K denote the plant and controller dynamical systems. The closed loop
system, composed of the plant and control pair (P, K) in Fig. 2 is denoted as

T(P,K) and
relates [ Ve } to [ v } .
v, z

If we want to add more output variables in 7 (P, K), we denote this closed loop
system as 7 (P, K).

The identified models are represented by using superscript (A) For example,
P and 7A'(73,}C) are the identified models of the plant P and the closed loop
system T (P, K).

Associated with any given linear dynamical system P having the transfer
function matrix

D+ C(sI — A)'B,

the system matrix of P is defined as
D C
B A\’

For given stochastic signals v and y, the autocorrelations of the signal y are
defined as

R £ Eylk+i)y(k)T, i=0,1,--.

The crosscorrelations of the signal y and v are defined as

Riyv é goo y(k + i)v(k)Tv 1= 07 1: Tt

1 INTRODUCTION

The vast majority of industrial controllers are PID and are not model-based.
While this avoids reliance on models and model error characterizations, these
controllers may not yield performance adequate for high precision control.
Let P denote a real dynamical system, hence it is not subject to exact
mathematical description. Assume P is an approximation of P (for instance,
from an identification algorithm). The discrepancy between P and Pis usually
denoted as AP =P —P. AP cannot be completely known. Instead, the norm
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bound «y of AP is usually estimated. Robust control theory can find a controller
such that the whole set of the plants described by

{P+AP : ||AP| <~} (1)

are stabilized. The robustness of such a controller rests on the fact that it
controls infinitely many plants in the set (1). The size of this set depends on
the size of 7. The larger the v, the more robust is the controller. Normally
performance and robustness are tradeoffs (performance goes down as 7y goes
up). Determining that R

P+ AP
is consistent with observed data for some 7 such that

AP <~

is often called “model validation”. However, the usefulness of robust control
and model validation concepts relate to the following questions:

e Does an infinite error AP in the plant model imply that the plant model
is bad for control design?

e Does arbitrarily small AP imply that the plant model is good for control
design?

Reference [3] gives examples to show that the answer to both questions is no,
due to the fact that the modeling and control problems are not independent.
Hence, a small AP does not necessarily lead to good closed loop performance,
and a large AP (and hence large ) does not necessarily lead to bad closed loop
performance. Hence robust control theory only solves control problems for a
small fraction of the desirable plant descriptions, namely the plant descriptions
with small open loop plant perturbations. Other techniques might not com-
promise performance even for large 7. Even robust identification coupled with
robust control may not yield an appropriate controller due to the conservative
nature of the results, and due to the fact that no closed loop identification is
used to improve the models. Only closed loop criteria for model validation can
remedy these situations.

Alternative approaches, called iterative identification and control have been
proposed. [4, 13] are two examples of such approaches. The control design is
not a robust control design, although some robustness is indirectively achieved
because of the iterative nature for model improvement. [20] stabilizes both
the reduced order model and the real plant. Our motivation is to iteratively
combine identification with robust control. Similar motivation has led [21] to
use frequency domain approaches. Our work is in time domain.
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The uncertainty considered in our paper is characterized in the so-called
finite-signal-to-noise (FSN) model [1], where sensor and actuator noises are
modeled as zero-mean, white noises with variances affinely related to the signal
variances. The ratio of the signal variance to the noise variance is defined
as the “signal to noise ratio” (SNR). The SNR is unknown but bounded in
our robust control problem (called herein, “robust FSN control”). This paper
introduces the theory of robust FSN control. It includes some multiplicative
noises as special cases, and hence can represent some parameter uncertainty.
Hence our approach here also solves certain deterministic robust stabilization
problem [22].

Some comment is required on the definitions of model “validation” and “in-
validation”. If one means by “validation” that the model P + AP | ||AP|| < ~
is consistent with all experimental data that one might conceive, then any
mathematical model can always be “invalidated” by an experiment [3], since
mathematical models can never capture all input/output properties of a real
system. The model validation in [18, 16, 17] uses this meaning for robust con-
trol design. Their approach characterizes model error in the open loop sense
and focuses mainly on how to evaluate the consistency between the perturbed
plant and the observed data. No intention is given to improving the model
when the inconsistency does happen. Our intent and our meaning of the word
“validation” is that a specified closed loop performance is achieved using the
model (and possibly an assumed error bound) in a model based controller. To
distinguish from other definitions we will call this “performance validation”
of models. The integrated open-loop identification and control studied in [5]
provides a method to do “performance validation” of models by using weighted
g-Markov Cover identification and Output Covariance Control (OCC). The
weight obtained in the OCC control design is used as the weight for the open
loop identification and this weight passes important performance-relevant in-
formation to identification, such that a proper model can be found for control
design. The integrated closed loop identification and control is another “perfor-
mance validation” of models where the model error is considered in the closed
loop sense, and the closed loop performance depends on both model refinement
and control redesign. Such approaches [3, 5, 8, 9, 10, 11, 12, 13, 14] seek to it-
eratively improve performance, unlike the robust control scenario where model
is not updated.

This paper provides a method to do performance validation of models and
control design, complementary to the control method in [2]. We update the
control design model P based upon closed loop identification. A new controller
is designed on each new iteration. For our example the process converges in five
iterations. The convergence of any iterative approach depends upon both the
choice of identification and control methods. Rapidly achieving performance
specifications along iterations would indicate either lenient performance criteria
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or coherence between the identification and control methods. This coherence
is an important new research objective and is the motivation of this paper. To
address this coherence issue, we modify both identification and control meth-
ods to make them more compatible. The new identification results extend the
g-Markov Cover method to include measurement and actuation noise (errors
in variables). Furthermore, this noise may have a finite signal-to-noise (FSN)
structure, where larger signals carry more noise. The new control design result
introduced in [2] and modified here for the discrete case, utilizes the FSN struc-
ture to parameterize model error as the signal-to-noise ratios in all input/output
channels. This parameterization of model error makes the identification and
control steps more compatible, leading to better results in fewer iterations. In
addition, the FSN noise model is much more realistic in practical situations.
As examples, the roundoff error in A/D conversion is related to the size of the
signal, and the turbulence noise on an aircraft is related to the angle of attack
signal.

This paper is organized as the follows. Section 2 describes the new FSN
model structure for a real controlled system. Section 3 describes the new iden-
tification method which is called QMCy,,,. This identification will be used in
the integrated process, and performed for closed loop systems. Section 4 de-
scribes the method to extract the plant model from closed loop data. Section
5 describes the control design algorithm using the new control design method.
This control design algorithm provides an output feedback controller for a lin-
ear FSN system. Section 6 describes the iterative algorithm which combines
closed loop identification and control design. Section 7 describes an example.
Section 8 offers some conclusions.

2 FINITE SIGNAL-TO-NOISE MODEL STRUCTURE

A controlled system consists of a plant P, a control computer K, actuating
hardware A, sensing hardware S, and A/D and D/A converters. Noises enter
each of these components. In the following Fig. 1, the block diagram depicts a
typical controlled system. Where v, € IR™ and v, € R™ are signals injected by
the control computer (say for identification purposes); v € R™ and z € R" are
signals which can be measured through the control computer; wp, w, and w;
are noises associated with the original plant P, the actuating hardware 4 and
sensing hardware S; w, represents the quantization error in A/D conversion
and w, the quantization error in D/A conversion; w,. is the controller state
computational error. In this paper we only consider noises at sources v., v,
Wy, w, and w.. The classical model for these noises is the additive white noise,
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which is independent of system signals. However, FSN models described below
are more realistic [1].

Wy Wq Wy Ws W
! ! ! ! !
> D/A - A > P > S - A/D

control computer

?47 K

Y | Y

A

?:
U Ve We z v,

Fig. 1: A Controlled System with Noises

In Fig. 1, let the noise w,, be zero-mean white noise with covariance W,, and
u(k) be the control signal with covariance U. In the majority of linear systems
(including LQG control theory), W, is unrelated to any measure of strength of
the signal u. However, the FSN model assumes that they are affinely related:

Wuii = Wuoii + 61Ull (2)
That is, the signal-to-noise ratio of the i-th control channel defined by

4 Uii

A
NR=§1=2
SN ! (Wu - Wuo)ii

is finite in the FSN model and infinite in the classical model. It is easy to
understand why feedback controllers using FSN models yield maximal accuracy
at finite control gains. Conversely, the LQG theory uses a noise model that
leads to maximal accuracy at infinite control gains. This is one unfortunate and
unrealistic property of LQG controllers. A minimum variance FSN controller
is one that yields minimum output covariance (or variance) using FSN noise
models, characterized by property (2).

Ignoring w, and any dynamics in D/A, A, § and A/D and moving the
noise source w, to the input and output of the control computer leads to the
following block diagram
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A
I
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Y Y
u z

Fig. 2: Setup for Closed Loop Identification

where £ € IR™, § € IR" are equivalent or approximant descriptions of noises
Wy, W, and w.. Define Z and @ by z = 2+ 60 and u = @ + £ as the input signals
and let the covariance of a signal z(¢) be denoted by its capital X. Hence

U=U+Z, Z=72+© (3)

where the plant P and the control computer are characterized as discrete-time
systems. Hence, all the noises &, 6, v, and v, are independent discrete-time
white noise processes. The discrete-time white noise process is assumed to be
a wide sense stationary process. This paper assumes FSN noise models for
€T 677

The following assumptions will be used:
Assumption (A1)~(A3):

(A1) The identification signals v, and v, are discrete-time white noise pro-
cesses with known covariances.

(A2) ¢ and 0 are discrete-time FSN white noise processes, i.e., if we denote
the covariance of £, 0 as E, © and the covariance of 4, Z as U and Z,
then the FSN assumption implies

E = = + diag(é.) ddiag(U) 4)
0O = O + diag(é.) ddiag(2) (5)
where

6(: = [6617"'76Cnc]T
62:[6217"'76 ]T

Zn,
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and d., and 6., represent the noise-to-signal ratios at each channel. We

assume that the noise-to-signal ratios are all less than 11, i.e., we assume
0<é, <6l <1, i=1,--,m
03621562<17]:111n (6)

Zo and O are known constant matrices which characterize the part of the
covariance (of the ambient noi:s*e) that is not proportional to the signal
covariance. Notice that U and Z satisfy (3), hence Z and © in (5) satisfy

= + diag(d.) ddiag(Z) = E¢ + diag(d.) ddiag(U)
O + diag(d,) ddiag(®) = O + diag(d,) ddiag(Z)

(A3) All the processes &, 0, v. and v, are mutually independent.

3 CLOSED-LOOP IDENTIFICATION FROM NOISY DATA

Now we consider the real closed loop system in Fig. 3 which has FSN noise and
can be depicted by the following block diagram

(G

v Hé—r T(P,}C) — Y

Fig. 3: The block diagram for identification purposes.

where T (P, K) denotes the system relating v + ¢ to y and

=[] o= [g] o 12)

We wish to construct a state space model of the closed loop system using only
an identification experiment with white noise inputs. Following that, the plant
model must be extracted from this closed loop model. This second task is
treated in section 4.

1This implies that the noise level is at most the same as the level of the signal. This is
not a necessary assumption.
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The identification method used here finds a linear state space model to
match the data set

Dataq é {RiaRiy'ua 1= 0715"'aq_ 1}

where ¢ is a chosen integer, R; and R;y, are computed from the noise response
of the real system

Ri = Sooy(k +i)y(k)T
Riyv é goo y(k + i)v(k)Ta 1= 0: ]-7 g — 1.

A linear model (A4, B,C, D) which matches the data set Data, is called g-

Markov Cover. When no measurement noise is present, necessary and sufficient

conditions for the existence of g-Markov Covers are given in [6, 7] as well as a

parameterization of all ¢-Markov Covers. A new contribution of this section is

to provide a parameterization of all ¢-Markov Covers for systems with input

and output noises of FSN structure. We will call such models QMCg,,,.
Construct Toeplitz matrices

Ro R? . R;71
A | Bi R, -+ RT,
Rq = . . . .
R,1 Ry» -+ Rq
Royy 0 e 0
Rl v RO v e 0
A y Yy
quv = . . .

R(qfl)yv R(q*2)yv -+ Royy

Also denote the covariance of v(k) as V. Define
=0
v=[5e]
Z 0
0 O
§ =107 61T

From assumption (A2), the FSN noise (k) which is generated in the closed
loop system (Fig. 2) has the covariance satisfying

Uy =

—

and

U + diag(d) ddiag(¥) = ¥ + diag(d) ddiag(Ro) (7)
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The following theorem determines when a QMCy,, exists.
Theorem 3.1: Suppose assumptions (A1)~ (A3) hold, and the data set Data,
is given. Then the following statements are equivalent:

(1) There ezists a model of FSN structure which matches the noisy data set
Data,.

(ii) The following holds

Ry > Ry V' (V+ I T)VTR]
where V=1V and ¥ satisfies (7).
Proof: See appendix A.

Note that the existence of a g-Markov Cover depends on the choice of g. The
largest ¢ for which a g-Markov Cover exists is easily computed by increasing
g until condition (ii) fails. For large ¢ see [5] to construct an approximate
g-Markov Cover which is closest to the data.

For the system in Fig. 3, consider the following algorithm
The QMCy,, Algorithm (¢-Markov Cover of FSN Structure):

Step 1 Compute the data set Data,, U, and V' from the noisy data v(k) and

y(k) (k:O,l,---,l).

Step 2 Compute U from the equality (7) and compute the data matriz

D, =R, — Ry V' (V+ I @ W)V TR]

qyv

if Dy > 0, find a full rank matriz factor Oy: D, = OquT. If Dy, 20,
there is no linear model matching the data set Data, and stop.

Step 3 Compute

M, = [ROyv Rlyv : ng'u] v
Mg—1 = [ ny(g—1) O]M
041 = [ ny(g—1) O]qu
Ng1 = [OInyql]Oq

and
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where U is an arbitrary matriz satisfying voT = I, and V} and V, are

computed from the SVD’s
Y, 0] [VE
o[ o) [

w5 2][)

Theorem 3.2: Suppose a QMCy,, exists for a given data set Data,, then the
above QMCy,, algorithm parameterizes all QMCg,,, .
Proof: The proof is similar to the standard g-Markov Cover result in [5] and

Og—1

[ Mg—1 Ng—s ]

is not repeated here. O
Remark: The QMCy,, algorithm provides a g-Markov Cover when the noise
is constant = = =y, © = O¢ as well in the FSN case. O

4 PLANT IDENTIFICATION

After using the QMCy,, algorithm to find a linear model with FSN structure
for the closed loop system, the next task is to extract a model of the plant,
given this closed loop model and a priori knowledge of the controller. Several
ways have been proposed to do this. Method [4] simply subtracts from the
closed loop model the known controller dynamics. This leads to a state model
of order of the identified closed loop system plus the order of the controller
(that is equal to the plant order plus twice the controller order). Hence, model
reduction is required to reduce the augmented system to a minimal realization
of the plant. This produces a plant model. The approach herein yields a plant
representation that is of order of the identified closed loop system (of order
of the plant plus controller), and hence is simpler than [4]. This approach to
extract the plant from the closed loop model first appears in [15], where both
the plant and the controller are assumed to be linear systems. While this plant
representation is of lower order than [4], it must still be reduced by model
reduction to get a minimal realization of the plant.

Consider the asymptotically stable closed loop system 7 (P, K) depicted in
Fig. 3. Since T (P, K) represents the real closed loop system, no mathematical
model can capture all properties of 7 (P, K). However, it is possible to find a
linear model to capture certain properties of 7 (P, K). For example, for ¢ small
enough, it is always possible to obtain a ¢-Markov Cover for 7 (P, K). Suppose
7A'(73, K) is a g¢-Markov Cover for the closed loop system. We want to construct
a linear state space model for the real plant P based on T (P, K). Since 7 (P, K)
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is a linear system with interconnection in Fig. 2, there must exist a linear system
P and K such that the transfer function matrix of 7 (P, K) satisfies

-1

[—é@_?ﬁ}‘ )

T(P,K)(s) =

Assume 7 (P,K) is obtained by using the identification scheme described
in the last section and its system matrix is

240

Partition B, C and D according to the dimensions of v., v;, v and z and
rewrite the system matrix of 7 (P, K) as

,;11 ,;12 C:H
Qm Dg2 Cg ) (9)
B, By A

and compute the following matrix
PN - A - A oq—1
Dy, Cp| _ | Dan Ca2| | D C4 (10)
B, A, B, A 0 I '

Then the linear system P satisfying (8) with FSN structure can be described
by

2(k) 1 _[Dy I Dy G, i%
[x(k+1)} [Bp 0 B, AP] ugg (11)

and the covariances of ¢ and 6 satisfy assumption (A2).

In this paper, we take the linear system P described in (11) as our model

for control design. Note that this model is determined from closed loop data
of FSN structure.
Remark: We are only interested in a plant model which is good for control
design. Hence whether P is close to P is not our concern here, since it is known
that the open loop error P — P and the closed loop error 7(P,K) — T(P,K)
may be quite different from each other (small closed loop error and infinite
open loop error are not contradictory events. See preface of this special issue).
O
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5 OUTPUT FEEDBACK CONTROL
DESIGN FOR SYSTEM WITH FSN NOISES

Since the identified model P has FSN structure, we must now provide a control
method for models with FSN structure. In [2], for continuous time plants,
an output feedback controller is found which is robust to FSN noise. This
section will provide new characterizations of FSN stability and modifications
to [2], and solve the discrete-time FSN control problem. Secondly, the signal-to-
noise ratios d; ' are assumed to be uncertain parameters falling within certain
intervals, and a controller guaranteeing output variance performance over this
set of variations of §; is given. The measure obtained here is denoted as fugsy,
which is a function of the plant and its controller.

5.1 Stability and Performance Analysis

Let w(k) € R’ denote a zero-mean white noise; and y;(k) € R fori =1,2,---,1.
The discrete time, asymptotically stable system 7 of | outputs considered here
has the following state space description

y1 (k) D, ¢

o I s [m9] 12)
yi(k) D, G z()

z(k+1) B A

Denote the solution of the following Lyapunov equation as L;
Li=ATL;A+CTC; (13)

Since A is a discrete-time stable matrix, then L; = LT > 0. Define the set of
positive covariances by

P={W : WeR>™, W>o0},

then the covariances of all possible input signals w(k) will lie within P.
Definition 5.1: Let W be the covariance of the input signal w(k) and y;(k)
be the corresponding response of (12) to w(k). For this given W define the
variance of the white noise response by

Vi=Euyi(k), i=1,2,---,1

A linear mapping V. : P — ]Rl_i_ is called an I/ O variance mapping associated
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with the LTI system of (12), which could be expressed as

Yi V(W)
Y5 V(W)
C = S =vr), wep.
3"1 V(W)

V(W) can be expressed in terms of the Lyapunov matrices computed from
(13)
V(W) = te{W(D]D; + B"L;B)}, i=1,2,---,1.

Now consider the case where w(k) in the above system is an FSN noise.
Here assume w(k) = ¢o(k) + (k). If we denote the output variance of y;(k) as
Y; for i = 1,2,---,1, and covariances of (k) and ¥(k) as ¥y € P and ¥ € P
respectively, then the FSN model implies

U = Adiag(¥1,Ys,---,Y)) (14)

where

A= diag(&l, 62, ey, (Sl)
The §;’s reflect the noise-to-signal ratios satisfying assumption (A2). In this
paper, this A matrix is assumed to lie within the set

A = {diag(dy, 62, -+, &) |0<6; <6, i=1,2,---,1} (15)

7 7

where 0 < 8 < 1fori=1,2,---,1. In this case
Y:[Yia )/27 Tt le]TEIR‘Z-

will satisfy
Y =V (¥ + P) =V (¥, + Adiag(Y)) (16)

In order to emphasize the vector argument Y in the following discussion, a
notational abuse is used, where V(-) is taken as a linear mapping from ]RlJr
to R!,. Using this (abused) notation, (16) simply implies that ¥ is a fixed
point of V(-) in ]Rﬂ_. Notice that V'(-) is also a function of A. However for
notational simplicity, we do not explicitly address this dependence which can
be determined from the context.
Definition 5.2: The discrete-time system (12) is said to be robustly FSN stable
with respect to A, if for any A € A, there exists a unique and finite vector
Y e ]Rﬂ_ satisfying (16).

The following theorem addresses this fixed point or robust FSN stability.
Theorem 5.3: The following statements are equivalent:



FSN MODEL IDENTIFICATION AND CONTROL 15

(1) (12) is robust FSN stable with respect to A.
(i) VAe A, V() : ]RlJr — ]RlJr s a contraction in ]Rl+, ie, VY,V € ]RlJr,

~ ~

IV (o + Adiag(Y)) — V(¥o + Adiag(¥V)|| < V],V 2V -V
for some vector norm || - || equipped by R
(1i1) pgsn (T, A) < 1, where

/Lfsn(T, A) = max S\(GA), G= {Gij}, Gij = V(E])
AeA

If the above hold, for any A € A, the unique fized point of V(-) or the
output variance of (12) with FSN noises can be computed as

Y = (I - GA) "LV (Ty).

Proof: See appendix A.

The pgs, measure in theorem 5.3 can be used to test whether (12) is robustly
FSN stable. This pg, measure is similar to ps proposed in [2] except that in
[2] fixed A is considered and pgy is characterized by I/0 variance mapping.

Now we consider the FSN performance of system 7 which is augmented
from T by adding a performance variable yo (k)

Yo(k) Dy Co
y1(k) D, ¢4
yQ(k) _ D2 02 ’U}(k)
=L [:c(k) } : (17)
yi(k) Dy G
xz(k+1) B A

In FSN noise case, w(k) = 9o(k) + (k).
The variance mapping which maps ¥o + ¥ to € yd (k)yo(k) is denoted as
Vo, which can be expressed as

Eoo ¥E (B)yo (k) = V(¥ + ) = tr{(¥o + ¥)(DI Dy + B LyB)}

with Lg satisfying (13).
Definition 5.4: (17) has robust FSN performance if it is robustly FSN stable
and for a given v € Ry and for all A € A, Eo yo(k)Tyo(k) < .

From this definition, the output variance mapping V(-) must satisfy

maK{Vg(\IJO + Adiag(Y)) | Y satisfies (16) } <~
Ae
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Let
YO = Vo(‘I’O + A dlag(Y))

with Y satisfying (16), then we have

Yo = Vo(¥) + Vo(Adiag(Y))
1
= V(%) + Z Vo(0;E;Y5)
!
= V(W) + ) a:iVo(E{(I - GA)™'V(¥o)},)

i=1

where {-}; denotes the i-th element of a vector {-}. If we further denote

St <18>
Gi1 = V(o)

Gio = [Vo(E1) --- Vo(E) ]

621 = V(\I’o)

Goo = {Gij}, Gij = Vi(Ej)
then Yy could be rewritten in the linear fractional form (LFT)
Yo = G114 G1oA(I — G A) Gy

For system 7T described by (17), consider the following set

| =

We have the following theorem.
Theorem 5.5: The following statements are equivalent:

(1) (12) has robust FSN performance.
(ii) ,Ufsn(’i-a A,) <L

Proof: See appendix A.
Because of the above theorem, if there is an a € IR such that

Nfsn(,idv A’Y) < l/a
then

maXA{Vo(\I/O + Adiag(Y)) | Y satisfies (16)} < v/« (19)
A€a
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where
alA = {diag(d1,---,8) | 0<6; < ad i = 1,1}

Inequality (19) implies a trade-off between the size of A and the robust FSN
performance.

Now we consider the computation of g (7, A.).
Theorem 5.6: /,tfsn(,]‘:, A,) can be computed from the following

Mfsn (717 A’Y) = S‘(C"AJr)

where

At = , (20)
5"
Proof: See appendix.

5.2 Controller Design for System with FSN Noises

Now we consider the control design for the FSN plant model. For the system
obtained from previous identification procedure, the following setup is used

> Yo

¢ 0

| |

K ""é
N
u=1u 2 Y2

Fig. : 4 The System Setup for Control Design.

where P is the design model (which is a minimal realization of the identified
plant model). The state space description of the design model P is
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The performance variable is defined as

yo(k) = Cox(k) + [ Do, Do, ] [%]0((]2))_:%((]2)) ] '

The realization of the controller K is denoted as (4., B¢, C., D.). Hence

e o 3 | R Al

The &, in the plant and the (k) in the controller are both FSN noises. The
augmented design model which includes the FSN structure and the performance
variable can be expressed as

o (k) Doy Do 0Cot re iy 4 e(h)
(k) 0 0 IO gk +6(k)
wk) |=|D, 0 D,C, u(k) (23)
z(k) D, I Dy Gy z(k)
ap(k +1) B, 0 B, 4
where
Eoo € (k) = 0c, Eoo v, (k)
oo 03(]9) = (521. € yg, (k)

Denote ¢ = [fT 67 ]T and the closed loop system descriptions

76(75, K) = closed loop system descriptions between ¢ and yo,
7'(75, K) = closed loop system descriptions between v and [y{ yd]7,
T(P,K) = closed loop system descriptions between ¢ and [yT yT yT]7.

Denote the system matrix of 7 (P, K) as
Do Co
D, Gy

Dy Cs
B A

The performance sought here is
Eoo Yo (K)yo(k) = V(o + Adiag(Y)) < v

with Y satisfying
Y =V (¥, + Adiag(Y))
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and v € IRy is a prescribed number.
Robust FSN Control Problem: Given a performance level v € Ry, find a
robust FSN controller such that for all A € A, the output variance satisfies

Exo ya (K)yo(k)) < -

This problem can be recast into conditions involving ussn measure. The optimal
robust FSN controller solves

inf pesn(T(P,K), A),

and the suboptimal robust FSN controller KC solves the following feasibility prob-
lem o
Nfsn(T(PaIC)a A’Y) < L.

If no such a controller exists for the given performance level 7, i.e.

ll%f ufsn(,id(ﬁa IC)’ A’Y) % 1,

find another performance level y1 > v and a FSN controller such that v1 bounds
the FSN output variance.

Since pgsn(+) is a nonlinear function of the controller parameters, no exact
solution of the above problem is available. An iterative procedure similar to
the one proposed in [2] will now be developed. We will call our algorithm the
Wsn control design algorithm.

If we have o

Nfsn(T(pa }C)v Av) = 67
then
B =hTGATd (24)
where h and d = [do,dy,---,d;]T are the right and left eigenvectors of GA*
which are normalized to satisfy

ntd=1, (25)

and A% is defined in (20). From the Perron-Frobenius theorem [19], h,d €
]lel. Partition h according to the dimension 1, n, and n, as

=l R

Then the right side of the equality (24) is the output variance of the scaled
system T, (P, K) whose system matrix is denoted as

hoDo hoCo
hDy 7 C,
hoDy hyCy
B A
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with respect to the input covariance
i.e., the output variance of 7, (P, K) satisfies

B =Vo(W(d) (27)

where Vg is the output variance with respect to the scaled closed loop system
Ti(P, K).

The above discussion is used to to derive the following algorithm, which
solves the robust FSN control problem by iterating between the ug, measure
and the controller K.

The pug, Control Design Algorithm:

(i) Choose h,d € ]Rl_ifrl satisfying (25). Formulate the scaled plant Pr of the
following system matrix

D1 Dy C4
Dy Dyy C
B, By, A
where
hoDy, hoDo, 0 hoCo
D11 == 0 0 5 D12 == hlI 5 Cl = 0
heD, 0 heD, haC,

D21:[Dp I],DQQZDP, CQZCP
Bi=[B, 0], B,=B,, A=A,

and compute W(d) from (26). Solve the discrete-time LQG or the vari-
ance control problem for the general discrete-time system with respect to
the input variance W (d) for the scaled open loop plant Pr (s). Denote the
controller thus obtained as K.

(ii) Compute G (see (18) for definition) from the closed loop system associated
with K and compute o
8= A(GA™)
where At is defined in (20). Find the left and right eigenvectors lNL,cZ €
]lel associated with the eigenvalue [3, which are normalized to satisfy

(25).
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(iii) If||h—h||+||d—d|| < € (where ||-|| is any vector norm equipped by R'™ ),
set ugsn = B and formulate the final controller, then stop. Otherwise, set

M4+ (1=MNh—h
M+ (1—Nd—d

and go to step 2, where € is a given error tolerance and X\ € [0, 1].

Remark: If pg, Control Design algorithm fails to yield pgn < 1, then
the performance bound v must be increased and another pug, control design
iteration is required. Unlike the D—K iteration in u synthesis of robust control,
no convergence of the ug, Control Design iteration is guaranteed. However,
for the example in section 7, a converged psn, Control Design occurs at all 5
iterations. For the 5th model iteration, the ug, measure with respect to the
iterations is shown in Fig. 11. O

6 INTEGRATED CLOSED-LOOP
IDENTIFICATION AND CONTROL

The model obtained from open loop identification may or may not be suitable
for control design, since the modeling and control design are not independent
problems. This has created quite an interest in closed loop identification [3, 5,
8,9, 10, 11, 12, 13, 14]. The purpose of this section is to give a new algorithm for
integrating the closed loop identification (modeling) problem and the control
problem. Our conceptual procedures for integrated Closed-Loop Identification
and Control (short for CLIC) are summarized as follows.

Procedures for CLIC

Step 1. For a given real plant P, find an initial model P of P. P could be
found from either an open-loop identification, or from the first principles
of physics given an idealization of the plant. Based on P, an initial
stabilizing controller K is designed.

Step 2. The closed loop system thus obtained is denoted as T(P,K). Identi-
fying the real closed loop system T(?,}C) by an identification algorithm,
denote the system thus obtained as T (P, K).

Step 3. Extract an open-loop plant model P of the real plant P from the iden-
tified closed loop system 7'(P,K). This extraction may provide a model
with high dimension. In this case, a model reduction step is performed to
obtain a minimal realization of P.
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Step 4. Design a new controller K for P such that certain design feasibil-
ity criteria are satisfied with respect to the design model P. Using this
controller to control the real plant T (P,K), evaluate the real closed loop
system based on an experiment. If the performance criteria of the closed
loop system are met, stop. Otherwise use the new K and go to step 2.

We propose the QMCy,,, identification for step 2, and the robust FSN con-

troller for step 4. With these ingredients we call the iterative algorithm the
FSN-CLIC algorithm, which combines closed loop FSN identification and FSN
controller design. The convergence of this algorithm cannot be proven math-
ematically because it is based upon real data from the real plant for which
no “truth model” is assumed. Numerical experience with a structure control
problem is given in section 7. The problem statement is as follows.
The FSN-CLIC problem: Given a stable system P, the FSN ratio bounds
5;“(2 = 1,---,1) and an achievable variance requirement . Find a low order
controller, by solving a closed loop identification and FSN control problem, such
that

(1) the real closed loop system is stable;

(ii) the admissible size of FSN ratios 1s mazimized with respect to the design
model P;

(iii) the real closed loop system has robust FSN performance with level ~y.

Definition 6.1: If a given model-based controller solves the FSN-CLIC prob-
lem, we say that the design model P used for control design is “validated with
respect to the performance level v”. If based on this given model, no such con-
troller solves the FSN-CLIC problem one would say that the model is “invalidated
with respect to performance level v”.

Remark: By these definitions, a model can be wvalidated but can not be in-
validated, since our ug;, control design algorithm can not prove that no such

controller exists. O
FSN-CLIC Algorithm

Step 0 Let v be the given performance level. Choose integer q (number of
Markov, covariance parameters to be matched); integer ny (length of the
experimental data); real number ¢ > 0 (used in convergence criterion);
the FSN ratio set A.

Step 1 Set i = 0. If an analytic description of the plant is available, set P;
as the description of this model and go to step 2. Otherwise, proceed to
identify a plant model P; by the QMCy,, identification algorithm 3.3.
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Step 2 Robust FSN Controller Design:
2a Do model reduction for ﬁl to obtain a lower order design model ﬁiT
for control design.
2b Choose variance performance bound k for the design model Pir. Use
the robust FSN Control Design algorithm to obtain a controller KC; and
compute the corresponding s, measure. The € is used as the stopping
criterion for the g, iteration.
2c If the ugsn Control Design iteration is successful, i.e.

Mfsn(T(Pir;Ki): An) <1

go to step 8. Otherwise, choose another k1 > k, set Kk = k1 and go to
step 2b.2

Step 3 Performance Study:
Evaluate the controller KC; with the real plant by white noise excitation
and compute the output variance. If

Eoo Yo Yo <

then we say the design model Pir is validated with respect to the perfor-
mance v and go to step 6; Otherwise the design model is not validated
and go to step 4.

Step 4 Closed-loop Identification:
Use QMCy,, identification algorithm to obtain a realization of the closed
loop system and denote it as T (P;, K;)-

Step 5 Set i« = ¢ + 1. Partition the system matrixz of the identified closed
loop system T(P,K; 1) as in (9). Then the plant model P; can be ex-
tracted from 7A'(73,}CZ-,1) as in section 4, where the system matriz of the
plant model P; is of the form (10). Here the P; is of the same order as

T(P,Ki=1)’s. Go to step 2.
Step 6 Get the controller from previous iteration. Stop.

Remark: Although « in robust FSN controller design is tuned for design
model, it is only a tuned design parameter for real plant. For the design model,
smaller x will render a controller which achieves better performance (but not
necessarily better for the real plant). Finding an optimal & for the actual closed
loop performance is an iterative task, and Table 1 shows the iteration on s for
the example solved. O

2800 ygyo < k is required for design model and £ ygyo < 7 is required for the real plant.
The rule of step 2 is to find a k for the design model such that the given v > 0 is feasible for
the real closed loop system.
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7 EXAMPLE

A certain smart structure under development at the Structural Systems and
Control Laboratory, Purdue University controls the attitude of a rigid mass
at the top of the structure. The model of this structure is of order 36. The
three outputs to control are the translations of the rigid top in z, y and z
directions. For the purpose of this study the digital simulation (complete with
computational errors) on a Sun SPARC station 5 is the real plant P. The
description of the real plant dynamics is known only to the digital simulation
but is unknown to identification, control design and performance evaluation
procedures. All three procedures are blind to knowledge of the plant.

This system has FSN structure due to sensor/actuator devices, A/D, D/A
conversions and computational error in the controller simulation. The actuators
and sensors are numerically implemented in the Sun SPARC station 5 to control
the real plant P. The signal to noise ratios of the FSN noises are assumed
unknown but bounded. We assume this bound

67 =025i=1,2,---,1l.

i.e, the variance of signals is at least 4-times larger than the noise variance.
Hence we have

A = {diag(dy,---,8) : 0<6; <025, i=1,---,1}.

The open loop variance can be computed from the white noise time response
of P
{00 5 (k)yo(k) }or = 0.8634.

The objective of the FSN-CLIC procedure is to find a model-based controller
to satisfy a specified performance bound

Eoo Y (k)yo(k) < v =0.66

for the actual closed loop system. Note that this is not a very severe perfor-
mance constraint. If a given model-based controller satisfies this performance
constraint then we say that the model is “validated with respect to the specified
performance bound ~”.

The constants used in the FSN-CLIC are

q = 150, ng = 20000, € = 1073

The initial model is identified by applying white noise excitation to P and
using the QMCy,,, algorithm to obtain a model Py of order 59. The D, matrix
obtained from the plant I/O data presents a set of 59 singular values, marked
x in Fig. 5.
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A g-Markov Cover model reduction method [7] is used to reduce the 59th
order 750 to the 25th order 750,«. A robust FSN controller is designed for ’ﬁgr. For
the purpose of designing a robust FSN controller, the design model performance
bound need to be chosen. As we know, it always exists a robust FSN controller
for large enough &, hence we first choose large « then decrease & for the stringent
performance required for the real plant. We initially pick £ = 4.0. This & yields
a successful FSN control for the design model 750,« but not for the closed loop
performance, see from Table 1. In this first iteration, the closed loop output
variance is

0.687 > v = 0.660

and hence the model is not validated. At the third iteration, we achieve a
performance of 0.675. The 4th and 5th iterations continue to achieve better
performances, but the design model is not validated until iteration 5, where
the closed loop performance

Eoo YT (k)yo (k) = 0.650 < v = 0.660.

iteration index 1 2 3 4 5

order of design model P;,. | 25 26 20 20 18
closed loop performance 0.687 | 0.684 | 0.675 | 0.665 | 0.656

performance bound & 4.0 2.0 1.818 | 1.429 | 1.0
robustness measure gy 0.251 | 0.241 | 0.291 | 0.328 | 0.469
control energy 0.067 | 0.110 | 0.186 | 0.319 | 0.654
model validated No No No No Yes

Table 1. Information summary of FSN-CLIC iteration

The chosen order of the design model is dictated by large gaps in the singular
values of the D, matrix. Fig. 5 shows the gaps in the singular value distribution
of the D, matrix used for model order determination. Notice that the closed
loop data “+” has a much simpler distribution of singular values than those
associated with the plant (marked “0” and “x”). These gaps occur at different
places on each iteration. The order of the design model on the 5th iteration is
chosen as 18. This 18th order model is validated, whereas the 25th order model
on iteration 1 is not validated. Hence model validation does not necessarily
require more complex models.

Fig. 6 compares the frequency response of all 5 design models during the
iterative FSN-CLIC process. The frequency response of the actual plant is
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given by the dashed line. Note that a model that is validated by our closed
loop criterion (model 5) certainly would not be considered as a good model by
an open loop criterion (model 1). Fig. 7 suggests that closed loop performance
is better using model 5 as the design model.

The fact that model 5 is validated is consistent with the impulse response
comparisons of Fig. 8. Throughout the five iterations of FSN-CLIC algorithm,
the controller changes are shown in Fig. 9 for channel y; — uq, the validated
model 5 leads to a controller that is neither the highest nor the lowest gain of
all controller iterations. The closed loop behavior is shown in Fig. 7, where the
peak of the first model is reduced by a factor 5, using the validated model 5.

Fig. 10 shows the variation of closed loop performance of the actual system
(top figure), the closed loop performance bound predicted for the design model,
and the ug, measure of robustness. Performance and robustness are almost
always in conflict. To get better real closed loop performance, this model must
be improved, not just the knowledge of the error bounds. We define a model
quality index as p

fsn
Mer=¢ Yo Yo
where larger M QI implies better model quality. From Table 1, the model 5
has the largest M @I although this was not our criterion for model validation.

8 CONCLUSION

There is no known relationship between errors of the open loop plant model
and errors of the closed loop model. This suggests that control design should
be done using closed loop data to extract a model of the plant for controller
design improvements. This approach allows the design model to be improved,
as opposed to some existing approaches which simply increase the error bound
to allow the fixed given plant model to yield a stabilizing controller. Such ap-
proaches focus on stability rather than performance. Our focus is performance.
we define a model to be wvalid for control design if its model-based controller
yields the required performance for the closed loop system. This seems to be
the only kind of model validation that is possible, since all properties of the
real plant cannot be captured by any mathematical model. The only kind of
real plant properties we care about are those that will allow successful closed
loop performance. The precise properties of the real plant that are required to
capture a successful model for control design remain an open question. This
paper proposes an algorithm (called FSN-CLIC) to receive closed loop impulse
or white noise response data, and to produce a new controller design. The new
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controller is based upon a plant model that was extracted from the closed loop
data. The algorithm has three components

e An identification, called QMCy,, , allows actuator and sensor noises with
FSN structure, where the noise variance is proportional to the signal
variance. The constants of proportionality are called the noise to signal
ratios 9;.

e A procedure to extract a plant model from the closed loop system model
is given, which makes no assumption about the controller and plant.

e A control design procedure that guarantees (for the design model) an
output variance upper bound, while allowing bounded uncertainty in the
noise to signal ratios ¢; (This is called a robust FSN controller).

At the conclusion of these three steps, the model generated in step (i)~(ii)
is said to be wvalidated for pgn control design if step (iii) produce a controller
yielding a specified variance bound

Eoo Yo Yo <

on the actual white noise response of the real system. Since we work with real
data, no necessary and sufficient conditions for model validation are possible.
However, each of three steps (i), (ii) and (iii) of procedure FSN-CLIC can
guarantee these things: in (i) a linear model QMCy,, can be constructed that
matches the data set D, from the real (nonlinear) plant. In (ii) the plant model
is constructed that (when driven by the known controllers) exactly matches the
identified closed loop model. In (iii) the controller guarantees (for the design
model) robust performance

EooYayo <

over all noise-to-signal ratios within the given bounds.

The example demonstrates that an 18th order linear model can be validated
for control design for a high order nonlinear plant when the performance cri-
terion is a variance constraint and the identification procedure contains mea-
surement, noise. The model that was validated for control design was found
after 5 iterations of FSN-CLIC algorithm, this model gives the best closed loop
performance and one of the worst open loop errors with respect to the real
plant. Thus, the example suggests the thesis of the paper that models derived
from closed loop information can be quite different from models that would be
considered good by an open loop criterion.
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APPENDIX
Proof of theorem 3.1: Assume (i) holds, then there exists a linear system of
the form
y(k) 1_[D C][vk)+v(k)
z(k+1) B A x(k) ’
The output sequence of this system can be obtained as
Yq(k) = Ogz(k) + Hy(vq (k) + ¢y (K)), (28)
where
c Hy 0O --- 0
CA H, Hy --- 0
Oq = . ’ Hq = . . . .
CAIt Hq,1 Hq,Q --- Hy
vg(k) = [T (k) oT(k+1) - vT(k+q—1)]"
T
be(k) = [¢T(k) YT (k+1) - 1/)T(/’Hq—l)]
T
yo(k) = [y (k) y"(k+1) - yT(k+q-1)]",

where {H; | i =0,1,---,q — 1} denotes the set of Markov parameters with
Hy=D, H=CA"'B, i=1,2,---,¢— 1.

Considering that v(k) is independent of 1(k), and taking covariance operation
of y,(k) in (28) yields

Ry = Eoo Yq(k)yq (k)T = 04 XOF + Hy{I @ (V + W)}HT (29)
with ¥ satisfying (7) and X satisfying
X = AXAT + BV +9)BT
Denote v(k) = v(k) + 1(k). From (28), we have

Riyy = Excylk+i)v T (k)
Eoo (CAz ( )+H o(k) + Hi_19(k + 1) + - - + Hov(k +))v” (k)

Hence (29) leads to

Ry~ Ry V' (V+I®@®)V-TR! =0,X07 >0

qyv q —
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i.e., (i) implies (ii).

On the other hand, if (ii) is satisfied, the QMCq,, algorithm will provide a
liner system which matches the data set Data,. Hence (ii) implies (i). O
Proof of theorem 5.3: VY,V € IRlJr, define Y = Y — Y. Consider the
difference

V(¥ + Adiag(Y)) — V(¥ 4+ Adiag(V)) = V(A diag(Y))

1
= V(Z 8 YiE;)
=1

l
= ZézﬁV(Ez)
i=1
= GAY
(ii) implies that for all A € A
[GAY|| <[]V,
or for all A € A there exists an induced matrix norm || - ||;, associated with
the vector norm || - || such that
[IGA|];n < 1.

Since the matrix spectral radius is less than any induced matrix norm, the
above is equivalent to

max p(GA) < 1.

AcA (€A)
Consider that GA is a matrix of all positive elements, by the Perron-Frobenius
theorem [19] B

p(GA) = A(GA).

Hence (ii) is equivalent to (iii).
(ii) = (i) is a standard result, hence (iii) = (i). Now we assume that (iii)
fails, i.e., there exists a Ay € A such that

A(GA) £ 1

Since 0 € A and A(GA) is a continuous function of A, hence there must exist
another A; € A such that A(GA;) = 1, or I — GA, is singular. This implies
that the following equations will not have a unique solution for Y

Y = V() + GAY. (30)

Hence if (ii) fails, then V() does not have a unique solution for Ay, i.e., (i)
fails. By solving Y from (30), the expression for Y follows. a
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Proof of Theorem 5.5: FSN performance implies that (12) is robustly FSN
stable or VA € A
det(I — éQQA) >0,

and the output variance Y satisfies

1
1-Yy—>0,
v

which is equivalent to for all 0 < dg < %, AeA
det(I — GQQA)[I — (50((;"11 + émA(I — 622A)_1(~.’|21)] > 0.

This is equivalent to for all A € A,

det(I — GA) > 0.

Hence the claim follows. O
Proof of Theorem 5.6: We first prove that

pusn (T, A,) = max A(GA)

where A7 is the set of all vertices of A,. For given A€ A, and p > 0, denote
F(A, p) = det(I = pGA).
Consider the set ~ ~
H(p) = {f(A,p) : Ae A}

By definition, we have

pesn (T, A) = max XGA)

1
0
= min{A>0 : OgH(%)}

= [max{p>0: 0¢ H(p)}""

Since f(A,p) is a multilinear function of d;(i = 0,1,---,1), hence for given
p >0, H(p) is an interval

= max{A >0 : 0¢€ H(

min f(A, p) < H(p) < max f(A,
AGA:f( p) < (p)_AeA:f( p)



FSN MODEL IDENTIFICATION AND CONTROL 31

where A denotes all the vertices of A,. i.e., for given p > 0,0 & H(p) is
equivalent to either

min f(A,p) >0 or max f(A,p) <0.
AeA’ AeA]

Hence we have } o
pesn (T, Ay) = max A(GA).
AcA?

Further by the Perron-Frobenius theorem [19], for any A € A7, there exist
eigenvectors h,d € IRIJ:'1 such that

hence ~ o
max A(GA) = A\(GA™)
AeA?
This proves theorem 5.6. O
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Fig. 5. The singular values of the Dy matrix from the initial identification data, the 5th

closed loop data and the 5th open-loop plant data.
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Identified plant model frequency response: wl -yl
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Fig. 6. The Bode plots of the identified plant model transfer function from wj to y;.

Closed-loop frequency response: wl -yl
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Fig. 7. The Bode plots of the closed loop transfer function from w; to y; with respect to
different iterations.
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Closed-loop/open loop impulse response: wl -yl
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Fig. 8. The impulse response of the closed loop system in different iterations

Controller frequency response: y1 —ul
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Fig. 9. The Bode plots of the controller transfer function from y; to uj.
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Performance v.s. designed mu_fsn measure
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