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Multiobjective Optimal Suspension Control to
Achieve Integrated Ride and Handling Performance

Jianbo Ly Member, IEEEand Mark DePoyster

Abstract—Multiobjective optimal control strategy is pursued vehicle wheel motions. In practice, the interaction between the
here for finding feedback control laws used in controlled suspen- wheels and road surfaces plays significant role for a vehicle
sions for automotive vehicles. The balanced vehicle ride and han- to maximize its stability during handling maneuvers, to reduce

dling performances are the main concern of this paper. The ride t ina dist dt d dd ially f
performance (car body performance) is characterized by anH- stopping distance and to reduce road damage (especially for

system norm, and the handling performance (wheel performance) heavy trucks). Current advances in system-level controls de-
is characterized by anH_, system norm, and the control method mands much more stringent performances for vehicle wheel
optimizes the mixed H> /Hy performances. The H; and Ho  motions than before. For example, maintaining as small tire dy-
system norms used in the mixedd / Ho, performance optimiza- pamic normal force (excursions from nominal normal force) as
tion are scaled by the corresponding open-loop norms such that o . .

the relative importance of the individual variables can be reflected possible is pu_rsued for many mtegrated vgh|cle _control systems
in the performance index for the vector variables. The comparison 0N top of the ride comfort requirement. This motivates the main
between passive and controllable suspensions shows in simulationtheme of this paper: how to design algorithms for controllable
the advantages of this optimal control strategy. The simulation re- suspensions to achieve desired vehicle body and wheel perfor-

_sult also shows that the invariant point for controlled suspensions mances, or say, to achieve a balanced ride and handling perfor-
in the quarter car case exists in the seven degree-of-freedom model.mance

The control scheme was tested and validated for a test vehicle, cur- ) )
rent paper only shows the simulation work. Recently, mass production of controllable suspensions

in automotive applications is increasingly getting attention
from both auto makers and auto parts suppliers. Many auto
makers and suppliers are working together to offer controlled
suspension as an option for high-end passenger cars. One of
. INTRODUCTION such example is the semiactive suspension called continuous

HE COMPUTER-CONTROLLED suspensions for transvariable real-time damper (CVRTD), developed at Delphi
T portation have been studied for decades. Many contidWtomotive Systems, which is now commercially available
strategies have been proposed. A good summary can be folihgeveral vehicle platforms. This commercial need revives
in [11] and [12] for automotive applications. Various strategiedevelopment activities in controlled suspensions, for example
which have been pursued include different modern linear afkl Delphi Automotive Systems. Current control strategies
nonlinear control methods. For example, [1] considers adapti¥@ed in Delphi's CVRTD system are mainly based on the
control, [2]-[4] and [7] use linear quadratic Gaussian (LQ@Yell-known sky-hook damping [12] and certain wheel motion
strategy for automotive vehicles, [14] usBs, control to an control, together with sophisticated nonlinear gain scheduling
active suspension for railway vehicles. Other strategies (fé¢hemes. In order to achieve desired performances with respect
example, preview control) can also be found in the literature.to all driving conditions, CVRTD control algorithms involved
The literature in this topic is very rich, however, most of th@undreds of calibration parameters and possible patches. The
work is focusing on controlling vehicle vertical dynamics oftrategy has been successfully proven in vehicles.
two degrees of freedom (quarter-car model) or of four degreedn order to increase application efficiency, primarily tuning
of freedom (half-car model). A handful few researched how &Pntrol algorithms in computer simulation environment could
control vehicle vertical dynamics of seven degree-of-freedofignificantly reduce the expensive in-vehicle tuning effort. This
(full-car model); for example, see [2]-[4], [7], and [8]. Anothefuning strategy uses field tests as a supplement, i.e., as a valida-
bias is emphasizing ride performance (good control of vehici@n tool and for small scale tuning. Along this line of thinking,
body motions) and in general paying insufficient attention th€¢ clean sheet approaches have been sought as a potential
alternative in the future at Delphi Automotive Systems. The
clean sheet approach aims to solve the potential performance
Manuscript received July 6, 2001; revised November 6, 2001. Manuscrigggradation upfront, using intensive computer simulation as a
received in final form February 4, 2002. Recommended by Associate Edidesign/validation tool before in-vehicle tuning is conducted.
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last decade (for example, see [5], [17], [16]). Using the line:
matrix inequality (short to LMI) studied in [6], [18], this mixed
H,/H., control problem can be solved very efficiently. A~
software toolbox for implementing the convex algorithms usin
LMI is now available for Matlab users (see [9] for detail). This
toolbox is called LMI Control Toolbox. Notice that [19] studies
a “multiobjective approach” in designing df, or anH., sus-
pension control law for a quarter-car model, which is differer
from the mixed H,/H., optimization approach here. Over
there, the weights used to reflect the individual performant
of the ride comfort, the road-holding and the rattle-space a
sought based on a local optimization algorithm and the weigt
are then used to construct the firfd} (or H..) control law.

This paper is organized as the follows. Section Il conside
the matrix form of the vertical vehicle dynamics. A linear trans
formation is used to transfer the equation of motion to the form
good for control design. A brief discussion about vehicle perfofid- 1- A vertical vehicle model of seven degrees of freedom.
mance evaluations is included in Section Ill. Section IV includes
control design strategy and method. A numerical example is ipring, damper and sensor are used, transformations can
cluded in Section V. Section VI concludes this paper. be used to convert the noncollocated configurations to the

The following notations are used in this paper. For a matrgpllocated configurations without loss of generality.
M, M > 0 means that the matrix is positive definite or all its | et

eigenvalues are positive numbeld; < 0 means—M > 0; M’

denotes the matrix transpose;™ denotes the matrix pseudoin- Zwy
verse. For a transfer matrik(s), 7*(jw) means the conjugate o= | Fwa
transpose of the frequency resporBgw), 7 (T(jw)) is the “ Zws
largest singular value of the frequency respofig¢w) evalu- Zwy

ated at frequency. R is the set of all real numberdiag( -)

formulates a diagonal matrix be the displacement vector who&h element denotes the ab-

solute displacement of theéh wheel of the vehicle, where=
1, 2, 3, and 4 corresponds to the left-front, right-front, left-rear,
and right-rear wheels.
The body motion vector is defined as
Il. VERTICAL VEHICLE DYNAMICS

h
Assume a vehicle under study is driven in a straight road g=|r
in a steady-state condition, i.e., with constant thrust and p

without brake action. In this case, the vertical dynamics of the

vehicle include the car body heave, roll, and pitch motiongherer is the heave displacement of the center of gravity of the
and the four wheel bounce motions. This is a typical sevear body (sprung mass),is the car body’s roll angle, andis
degree-of-freedom characterization of the vertical dynamitise car body’s pitch angle. Bothandp are the global angular
used for controlled suspensions. If both the longitudinal amtisplacements with respect to a perfect flat road surface or the
lateral motions of the vehicle are excessive, further degressa level.

of freedom must be included in order to provide a reasonableDenote

model. Three more degrees of freedom are needed: the vehicle

yaw, lateral, and longitudinal motion. That is, the resultant Zb;
system should be characterized by ten degrees of freedom. 2 = Zby
Although this ten degree-of-freedom dynamics is useful in Zbs
integrated vehicle dynamics control, this paper focuses on Zby

the seven degree-of-freedom dynamics. The extension Ofthe ector whosih element is the vertical displacement of
combining the current approach with other control strategies v Wnos 1 the vert 'SP
tde car body in théth corner, wheré = 1, 2, 3, and 4 corre-

gggggtlglg ten degrees of freedom of a vehicle will be StUOIIesponds to the left-front, right-front, left-rear, and the right-rear

Notice that in Fid. 1 that th . the d corners where the suspensions are connected.
otice thatin g. 1, we assume thattne spring, (€ dampety o 1 pe the transformation matrix relating body motion
the wheel at each of the four corners of the vehicle and togctorq to the corner position vectas, i.e

sensor used to measure the relative position between the two
ends of the suspension spring are collocated. Although this
is different from the real configuration where noncollocation 2= Hgq.
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For the collocated configuration in Fig. H, can be calculated  Using small motion assumption, the suspension forces in (2)

using vehicle geometry parameters as in the following: can be linearized around the steady-state operation point. That
L1 ; is, S(u, zrp, Zrp) Can be approximated as a linear function of
yif - —laf the relative positions, the relative velocities and the control vari-
- 1 —iylf —ixf able
vir e S=—K,zp— Cizp+u (6)
1 _lylr lzT

wherel, ; andL,. are the distances from the front and rear aleeyhereu could be the active suspension force or the semiactive

to car body center of gravity, respectively,; andl,;,. are half Suspension damping force, and

of the front and rear wheel tracks. K, =diag (K,,, K,,, K,,, K,,)
The relative positions of the suspensions at the left-front, the

right-front, the left-rear, and the right-rear corners are denoted

as with K, as the passive suspension spring rate atttheorner,

andC;, as the passive damping rate at itiecorner.

C, =diag (Cs,, Cs,, Cs,, Cs,)

Zr
Zri: Plugging (6) into (4) and (5) leads to the following matrix
Zrp = Zrps form of the linearized vehicle vertical dynamics:
Zrpa Myj=—HK,(Hq— 2,) — HCs(HqG — %,) + H'u
WhICh can be CompUtEd frOm andzw Mwéw = K?(Hq - Z'w) + CQ(Hq - 2“,) B Kt(zw - w)
Zrp = 2b — Zw- (1) (7)

Let S be the total suspension force vector, which is a non- If We introduce a new variable

linear function of the active control variable the relative po- P [ q ]

sition vectorz,,, and the relative velocity vectar,., Zw
S = S(t, 2rps Zrp)- @) then (7) can be rewritten as
M7+ D:+ K2 = Eyw+ E 8
Using this suspension forcg, the equation of motion for the Pz A o B ®
car body can be expressed as where
. ) (M, 0
Mgh = [1 11 1]S(u, Zrp; er) M= L 0 Mw]
Lowi® =lyrs =lyis lyir =lyir]S(u, 2rp, Zry) x_ |[HEH HK, ]
Lyp =[~loy —lof lor lor]S(u, 2rp, 2rp) 3) | —KH K+ K
wherelM, is the sprung massg,, andl,, are the roll and pitch D= H'CH _H/CS]
moments of inertia of the car body, respectively. | —C.H Cs
Let [0
B- Y]
My, = diag(My, L, Lyy) -
i
then (3) can be rewritten as the following matrix form: Ey=| "~ I} .
MyG = H'S(u, 2rp, Zep). 4) If we further define
If we define T = [j .
z
My = diag (Muw,, Muw,; Muw,, Muw,) Equation (8) can be expressed in the following state—space form:
K, =diag (Ktn Ki,, Kt Kt4) &= A% + Elw + Bzu (9)
whereM,,, is the unsprung mass at tfte corner,K, is theith  where
tire stiffness, then the wheel equations of motion can be written R T
as the following matrix form: A= MK —M—ID}
M %, = =S(u, zrp, 2op) — Ki(20 — w) (5) . 0
Br= M—lEl]
wherew is the road profile vector. Equations (4) and (5) consist -
of the mathematical description of a seven degree-of-freedom B, — [0
vehicle vertical dynamics. 2= _M*1E2
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Notice thatA is invertible if and only if theK matrix in the q
equation of motion (8) is invertible. K is invertible, the inverse /
of A can be written as e

p -K'D —-K'M

-1 _
At = I 0 (10)
Since any nonsingular and linear transformation does no

change system dynamics, we want to change (9) from using Rigid car body
w as disturbance to using as disturbance. The following
theorem discusses this.

Theorem 1:If K matrix in the equation of motion (8) is in-
vertible, then there exist state transformations

([

for any nonsingular matrix. with proper dimension, such that
(9) can be changed to

Proof: Consider the transformation
z = Li— Nw. (12)

Plugging (12) into (9) leads to _ _ , o
R R R . Fig. 2. Motion vectory,, of the heave, roll and pitch for the fictitious wheel
i =LAL 'z + L(AL™'N + By)w — N1 + LBou. (13) frame, and the motion vectarfor the car body.

since the inverse aof in (9) exists ifK is invertible. Hence, we

can eliminates term in (13) by choosing Let us use a fictitious rigid frame to connect the four wheels
3 of the vehicle, i.e., constraints posed on the four independent
N=—-LA'B, =1L [K El] wheels such that they move together in a rigid fashion (see Fig.
0 2). This fictitious rigid wheel frame has heave, roll, and pitch
i.e., (13) can be simplified to (11) with angular motions. Denote them as
A=LAL™! By
B, =-N Gw = | Tw
. Pw
By =LB>. which can be uniquely determined from the wheel displacement
Hence, the theorem is true. zw- The difference between the heave, roll, and pitch of the car

The above result shows that the existence of linear transfoedy and the heave, roll, and pitch of this fictitious wheel frame
mations which can alter the state—space description of the i&¢called the relative heave, roll, and pitch. They are defined as
hicle dynamics from using road profileas disturbance to using the following vector variable:
the road profile velocityw as disturbance. One advantage of
usinguw to replacew is due to the consideration thathas richer ) N
dynamic components than. Therefore is much closer to @nd the relative position,, can be expressed as
white noise tham for actual road profiles, see [11] and [12] for Zrp = HE. (14)
more discussion. Since the state—space control algorithms con-. . .
sidered here is a model-based conﬁrol strategy, agKaIman—IikeSlnce the actual w_heel§ are moved mdepender)tly, (14)is gen-
state estimation or observer is inevitably embedded in the coerfiijIIy not true. Qan|der.|ng the fact that. any mo_t|on can be de-
trol algorithm. This state estimator typically works well if thecomposedl as r|g.|d mo'uqn and a n_onngld motion, the actual
system disturbance is close to white noise process. wheel motion variables might be written as

Now let us consider choosing state transformation. The 2w = Zwpigia T Pwnonrigia- (15)
system states assembling (9) uges.,, ¢, Z, as the system with
states. There are infinity numbers of ways to choose other
combinations. In order to maximize the use of the measured Zwrigia = Hw.
sensor signals, it is possible to include, as part of the _
states. For example, we could choose,1) Z,,, z., 2, o 2) Hence, generally speaking, we have
Zrp, Zrps ¢, ¢. State set 1) actually includes 16 variables, which Zrp = HO — Zuy i (16)
means two variables are redundant. State set 2) seems okayl._,h . is h ) .
but does introduce more disturbance terms ¢, w might 'he question now is ow to C(.)mpumnomigid _andqw. Since
appear in the system description). In the following, instead IS a nonsquare matrlx,_ by using a pseudoinversecan be
directly usingz,, as part of system states, ax3 1 vectorf decomposed along the direction definediy

will be generated from this 4 1 vectorz,.,. 2w =HH 2+ (I — HH")z,. 17)

0=q—qu
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By comparing (15) and (17), we have small variations of the tire deflections. Notice that the so-called
Go = H 20, i = ([ — H HY)z,. (18) warped pattern leads to
With decomposition (18);,., in (16) can be rewritten as Zta =0
oy = H(q — HY2) + (HHY — )2, and
z 0
—HO+ (HH* - I)z,. (19) u# o
o however, the warped pattern rarely happens in reality.
Considering In order to mathematically characterize BRP and WFP,
HYHHY = H* both time and frequency responses can be used. The
traditional frequency response is mainly dealing with a
(19) implies single-input—single-output system. In order to evaluate perfor-

mances for seven degree-of-freedom vehicles using classical
single-loop techniques, one requires decomposing the perfor-
mances into sets of single-loop performances. For example the
Zrpe frequency response of the vehicle with respect to heave road

Now, we included as part of the new states and the total stafBPUt roll road input, and pitch road input. For the case where
vector is defined as road profiles induce combined heave, roll, and pitch motions,

H*(z,, — Hf) =0

i.e., the 3 x 1 vectord is linearly related to the 4x 1 vector

) this single-loop technique may not be appropriate. Frequency
2w responses of multinput—-multioutput systems, reflected by
z=1] .| =NweR" singular values, are required.
q If the transfer functions from théth road inputw; to the
Zuy heave, roll, and pitch accelerations are denotedgs (s),
where Tiw, (), andT}y, (s), then the following performance measure
9 will be used to characterize BRP
. 1/2
w . _ 2
(j =Lz (20) Oh ((U) = O hw <Z |Th w; Jw )
=1
Zw 4 1/2
and the transformation matricésand N can be expressed as or(w) =7 (Tip (Jw) <Z )
rI —HY 0 0 =1
I = 0 1 0 0 1/2
|0 0 I op(w —E
= w J“) 'le . (21)
o0 ) =7 (i) = (31
I —Ht K-1E The WFP can be characterlzed by the largest and the smallest
N = 0 1 . singular values of:, . (s), which is the transfer matrix from
the road input velocity vectab to the tire deflection derivative
vector
[ll. V EHICLE PERFORMANCE Seg = By — .

Generally speaking, a vehicle’s ride comfort (body perfor-

mance) and its road holding capability (wheel performance) awe denote them as

conflicting objectives [12]. Ride comfort requires that the car ow(w) =7 (Ts,,0(jw))
body achieves small acceleration levels and ideally to achieve (T P
zero car body accelerations. Therefore, the body performance 2w(W) =2 (Tz,0(jw))-

requires minimizing the acceleration levels for the car body’s The frequency responses are well defined in linear systems. If
heave, pitch, and roll motions with respect to typical road pre-system has significant nonlinearities, time responses are more
files. We should call this body regulation performance (BRP)appropriate for performance evaluation. A time response with
The handling performance, or the wheel performance impliesspect to a frequency-sweeping time sequences could also pro-
that the wheel normal forces are kept as constant as possillde certain frequency-response like characterization. For this
Physically, this means that wheels follow well with the roadonsideration, a magnitude varying chirp signal road profile is
profiles, so as to achieve as constant tire deflection as possibiged. This signal is shown in Fig. 4, which has frequency con-
We should call this desired wheel behavior as wheel followirtgnts from 0 to 15 Hz. This signal for left and right side of the
performance (WFP). wheels has a frequency shift in order to excite the pitch and roll
The performance variables for BRP can be chosen as the mwmdes of the car body.
celeration of the heave, roll, and pitch accelerati@nghe tire The time responses with respect to typical road profiles are
deflection derivative is one possible variable to measure WEIs0 used. The actually measured road inputs are recorded data
due to the fact that the small tire deflection derivatives implfrom typical road surface. In this paper a bad bump road profile
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Fig. 3. Simulink model of a seven degree-of-freedom vehicle.
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Fig. 4. Time response of the right and left road inputs.

data is used. The vehicle is assumed to travel straight in a chuet the sensor measurement be expressed as

stant speed of 60 km/h. y = Cyr + Dyrib + Dyou. 23)
IV. MULTIOBJECTIVE OPTIMAL CONTROL STRATEGY The goal here is to find an algorith@ of the following form:
Consider the plant described in (11) Ee =Acxe + Bey

i = Az + Biw + Bou. (22) u =C.x, (24)
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to limit the peak frequency responses, which is measured by TABLE |
the so-called., norm of the involved transfer matrix of the SUMMARY OF THE VEHICLE PARAMETERS
following variable: " "
. M; (kg) Iz (kgm?) | Iy (kgm?)
Zoo = Coo + Doo1t + Decpu 1583 531 2555
and the varian_ce of Fhe fpllowing yariable with respect to unit My, (kg) | Muy(kg) | Muy(kg) | My, (kg)
covariance white noise disturbancée p pr 7 -
25 = Coit + Dot K, (N/m) | Kq,(N/m) | Ksy (N/m) | Ko, (N/m)
35000 35000 34000 34000
The Iqtter is glso equivalentto a qua(_jrauc criterion in frequency Coy(Ns/m) | Csy(Ns/m) | Csy(Ns/m) | Cso(Ns/m)
domain and is called &> norm criterion. 0 00 200 200
If the loop is closed by using@' to control the plant7 based
on the sensor signal, then the closed-loop system can be ex- Ku(Ns/m) | Kiy(Ns/m) | Kiy(Ns/m) | Ki (Ns/m)
pressed as 220000 220000 220000 220000
. ix 4 Butb + B lz4(m) lzr(m)
X =hx 4 Biw + Byu 1.116 1.438
z9g = Cyx + Dypu
rom e , b | begm) | bprlm) | ber(m)
Zoo = CooX + DootW + Docpu (25) 0.77 0.77 0.765 0.765
with
TABLE I
A= |: A BZCC :| SUMMARY OF THE PASSIVE SUSPENSIONPERFORMANCE
B(‘Cy A(-, + BchQC(’

B 1T (G, 0)lloo 17.95
B:[ 1 } Front: |[Too1(G, 0)leo | 741

BvDyl Rear: [|To03(G,0)|lo | 17.83
Cy =[Cy D2C,] I1T2(G, 0)ll2 90.85
Co = [Coo Doo2cc] Heave: ||T2:(G,0)|]2 | 40.41
Roll: [|[To(G,0)]l2 | 72.11

Doot1 = Dool-

Pitch: [|T23(G,0)]l2 | 32.97

Denote the closed-loop transfer functions frérto z, in (25)
asTy(G, C) and froma t0 2o, in (25) asT (G, C). TheHs  The H,, norm of T, (G, C) does not exceed a given perfor-
norm of 75 (G, C) is the following quadratic criterion, which is mance levety., if and only if there exists a
equivalent to the variance of the signalwith respect to a unit
covariance white noise disturbandée P=P >0

IT>(G, O)|)3 = % / tr[T2(G, C; jw)T5 (G, C; jw)]dw  such that the following linear matrix inequality is true [6], [18]:

AP+ PA B pPcC’
where T»(G, C; jw) denotes the frequency response of + o

Ty (G, C). The Hy, norm of T (G, C) can be computed from B' -1 D, | <0 (26)
the following: CoP Do —2I
|IToo (G, C)||loo = supT [Teo (G, C; jw)] TheH, norm of T3 (G, C) does not exceed a given performance

level v, > 0 if and only if there exists a

where T.(G, C; jw) denotes the frequency response of ,

T (G, C). The H,, norm represents the peak magnitude Q=@ >0

(peak singular value) of the frequency response of a transfer o . L
matrix. Another explanation ofT..(G. )|l is the square SUch that the following linear matrix inequality is true:

root of the energy amplification factor ef,, with respect to all A y B
possible inputsp [ @ ;,Q —I} <0 (27)
2L (8)za0(t) di tr[C2QCh] < 2. (28)

Finding aC to satisfy (26) or (28) can be solved by the well-
W has nonzero but finite energy. known H cont_rol or H, control t_heory. However, fi_ndin_g a
controllerC to simultaneously satisfy (26) and (28) is still an
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Fig.5. Frequency response for the body heave, roll, and pitch accelerations with respect to road velocity inputs. Frequency response tioticedefidees.
Dotted line: passive, solid line: active controller .

TABLE Il problems for given performance leve}, ~.., or weight pair
SUMMARY OF THE PERFORMANCE USING THE WFP-BVPHASIZED (a /3)
CONTROLLERC' ’
ITel(G, C¥)leo | 1.48 Ji = ngn{ [T=(G, Ol : I15(G, OYI, < 72}

Front: [|Too1(G,CY)|lec | 1.11
Rear: [|[Toos(G) C¥)lloo | 141

IGCl__| 10005 J3 = min [af[T5(G, O], + BT (G, Ol
Heave: ||T2:(G,C%)|l2 | 52.89

Iz = win { TT5(G, O, : T (G, Ol < 7oc |

Roll: ||T5(G, C*)ll2 | 74.36 By using the linear matrix inequality solver (for example, LMI
Pitch: [|[T23(G,C¥)|l2 | 4L.11 control toolbox associated with Matlab), the solutions for the

above problem can be found, see [9]. This problem is trans-
ferred to a convex optimization problem and globally optimal

open problem and it may be computationally intractable. Feontroller can be found.

computational tractability, a single Lyapunov matrix Notice that the performance boungs or v, is required to

be feasible in order to have a solution for the mixég/ H .,

control problem. Hence, the choice of those bounds are very

important in shaping the performances of the final closed-loop

systems.

is sought in the above conditions, see [9] for detail. This sim- Sincez,, andz, are both vector variables, the performance

plification leads to a performance upper bound for bithand  achieved by the optimal controller might not reflect the per-

H,, norms of the closed-loop system (25). Denote the corrdrmance for the individual variables. We are really interested

sponding upper bounds fditl>(G, C)||; and ||7 (G, )|l in each element in., andz,. The following variable normal-

as ization uses the corresponding open-loop norms to weight the

corresponding contributions of the individual variables in total

H> andH., norms. Letzy; € R be theith element ofz,, and

Zooi € R be theith element ot... Denote the transfer function

The recently well-studied mixe#f» / H, control theory finds from t0 z..; 8sT..;(G, C)fori =1, 2, ..., m, and fromw

controllers such that those upper bounds are optimized or cédzy; asT» (G, C) fori =1, 2, ..., n. Assume the plant is

strained. stable, i.e., the open-loop transfer functions

Mixed Hs / H -, Control Problem: For a given plan&, solve
for an active controlle€ from any of the following optimization Twi(G, 0), T2(G, 0)

A

X2P=Q

1T2(G, Oy, 1T (G O

|oo'
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SV: Heave Acc/Road Vel SV: Roll Acc/Road Vel

10 20 30 40 10 20 30

SV: Pitch Acc/Road Vel SV: TDD/Road Vel
10'
10’
o 10°
107" 107}
10 20 30 40 10 20 30
Frequency (Hz) Frequency (Hz)

Fig. 6. Frequency response of heave, roll, and pitch accelerations, and one tire deflection derivative. Dotted lines: passive, solid lingralteive co

TABLE IV or equivalently, we are dealing with the following transfer ma-
SUMMARY OF THE PERFORMANCE USING THE BRP-BVPHASIZED trix in the mixedH /H COﬂtrO' problem.
CONTROLLER C*? 2/ Hoo ’
ITo(G, CO)leo | 1933 Ty(G, C) £ diag ( ! e ! )
Front: || Too1(G, C%) oo | 5.9 ||T21<G7 0)||2 ||T2n(G7 0)||2
Rear: ||[Too3(G, C%)lloo | 14.28 -T5(G, C).

IT2(G, C)ll2 23.70
Heave:|| T2 (G, C%)|l2 | 11.30
Roll: [T (G, C%|l, | 18.80

Let us now choose thél, and H, performance variables
in the suspension control design. Consider the seven degree-of-
freedom vehicle model shown in Fig. 1. The ride control per-
Pitch: [|Toa(G,C*)ll2_| 899 formance BRP aims to reduce the acceleration levels of the car
body on almost the whole frequency range, i.e., good vibra-
tion isolation. As we know for the quarter-car model, there is
an invariant point (frequency) where the magnitude of the in-
volved frequency response can not be affected by active con-

have finite H., and H, norms.
Thesth normalized variable for thégh element of:, is de-

fined as ) e -
trollers. SinceH ., norm optimization wants to limit the peak
P Cooi _— Dooi w value of the frequency response, this invariant point becomes a
T | Ts0i (G 0)]|oo |1 T50i (G, 0)||oo major barrier for the achievable performance in control design.
Doo; By using a quarter-car model [13] actually showed that the con-

+ | Toei (G, 0)]]oo " troller designed foH .. performance did not achieve good ride
performance at all. Therefore, itis not reasonable to characterize
or equivalently, we are dealing with the following transfer mahe BRP performance usind.. norm. Also [11], [12] support

trix in the mixedH»/ H, control problem: root mean square (rms) @f,-type of performance metric for
) ) BRP. We characterize BRP by tl&, norm for the following
Too (G, C) a diag( o ) variable:
||T001(G7 O)HOO ||TOOM(G7 0)”00 h
T (G, C). . .
Zo=q=|T
Similarly, theith normalized variable for thih element of P

29 IS defined as .
On the other hand, the wheel control performance aims to re-

Co; Dsy; Dyy; duce the wheel dynamic normal force. That is, we would like
112:(G, 0|2 * + 172:(G, 0)[l2 + [12:(G, 0)], ©  tokeep the magnitude of the frequency response of the involved

22 =



816 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002

H_ Norm and Its Bound

1.4 T T T

0.8

061

0.2

log,4(B)

Fig. 7. H, andH ., norms and their upper bounds at each control design.

H, Norm and Its Bound
35 T T T T

251 1

201 b

0 . . X
8 -6 -4 -2 0 2

tog, (B)

Trade-off Between Body and Wheel Performance Indices

1.4 T T

Body Performance

norm and H_ Norm

2

Normalized H

T T T T

Wheel Performance ,, 1

1 1 1 1

0 1 1
-7 -6 -5

Wheel Control <—————-

Fig. 8. Tradeoff between body and wheel performance.

-2 -1 0 1 2
log,,® - >Body Control

transfer function as constant as possible within all the frequenitye displacements due to static sprung mass or the dead load. In
region. Hence, arf{,, horm performance for WFP is appro-order to remove this steady-state offset, a high-pass filter can be

priate and we define

Zoo = Rtd = Zw — W-

used. However, in this paper, the time derivatiyg is used.
That is, instead of feeding back the high-pass-filtezgd to
the control algorithmz,.,, is used. Both hardware differentiation
and software differentiation can be used to obgajnfrom z,.,.
Hence, the measurement for control algorithms is

The sensors used here are the relative position sensors, which
measurez,,. Note thatz,,, includes the steady-state portion of Y = Zrp- (29)
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Trade-off Between Body and Wheel Performance Indices
1 .4 T T T T T T T 1

=3

normand H Norm
o
©

2

Normalized H
I
»

1
>

0.2 Front Wheel = i

Rear Wheel
1 1 1 1 1 1 1 1

7 -6 -5 -4 -3 -2 -1 0 1 2
Wheel Control <————-— log,(® - >Body Control

[K=)

Fig. 9. Tradeoff between body heave, roll, and pitch accelerations, and the front- and rear-wheel tire deflection derivatives.

TABLE V Notice that for smals, the optimal controller tries to suppress
SUMMARY OF THE PERFORMANCEUSING THE BALANCED CONTROLLERC*™ the peak values in the frequency responses for the wheel perfor-
mance with less concern for the body performance. A controller
corresponding to smaff should be called a WFP-emphasized
controller, denote it a§". One of such controllers is the one

1T (G, C*)loo 14.42
Front: | Tee1 (G, C)lloo | 4.56

Rear: [|Too3(G, C™)llo | 10.98 corresponding t@ = 10~7. Fig. 5 shows the singular values of
1T2(G, C™)]l2 24.16 the heave, roll, and pitch acceleration transfer functions with re-
Heave:|[ Ty (G, C™)[l, | 11.89 spect to the road profile velocities. It can be seen that although

the peak values of the transfer function of the tire deflection
derivatives are reduced, the body acceleration levels are actu-
ally increased significantly over the passive suspension in al-
most all the frequency region. That is, the good wheel perfor-
Using the system state y can be expressed as in (23) with mance is achieved in the expense of the ride performance. This
result is consistent with the nature of the wheel emphasized per-
Cy=[00H —I] formance. Table Ill summarizes the performance indexes corre-

Roll: [|[To2(G,C™)|2 | 18.77
Pitch: || T23(G,C®)|l2 | 9.47

D, =Cy,N sponding to controlle€™.
For largeg, the controller tries to reduce thé, norm for the
Dy =0. body heave, roll, and pitch accelerations. We should call this
BRP-emphasized controller. One of such controllers is the one
V. NUMERICAL EXAMPLE corresponding t@ = 40, denoted a€". Fig. 6 shows that the

frequency response of the heave, roll, and pitch accelerations
reduced dramatically in comparison with the passive sus-
: . Ension. However, the tire deflection derivative frequency re-
H, andHO" horms O.f the corresponding transfer matrices f ponses even get worse than the passive suspension. That is, the
the passive Suspensions can be computed asin Table II. . od body performance is achieved in the expense of the wheel
The control goal here is to compute_the a_ct|ve control S'gnggrformance. Table IV summarizes the performance indexes for
u, based on the sensor_measurep@admflneq n (.29)’ such that controllerC®. An invariant point (see [10] for definition) in fre-
the following cost function for a fixed is minimized: quency response for both pitch and heave motions can be found,
J() = min [IITOO(G O + ﬁ||T2(G, C)HQ} (30) Where both and active and passive suspension share the same
¢ magnitude for their singular values. Notice that this is not nec-
where the normalized transfer matrices are essarily true for the roll motion. Further study is needed in order
Too(G, C) 2 diag (22, 22 L L )T..(G, C to explain this.
( ) s (7'41 T e 17'83) ( ) The above control designs correspond to two extréiage
(G, C) 2 diag (55~ L L) Tu(G, O). which shows potential tradeoffs between BRP and WFP. In

40.41° 72.117 32.97

Consider the seven degree-of-freedom vehicle depicted
Fig. 1. The vehicle parameters are summarized in Table I. T
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Closed v.s. open loop heave acc Closed v.s. open loop roll acc

5 10 15 20 5 10 15

Closed v.s. open loop pitch acc Left and right road inputs
‘ 0.05

-0.05
5 10 15 20 0 5 10 15 20

Time (sec) Time (sec)

Fig. 10. Time response of the body heave, roll, and pitch with respect to chirp road inputs. Dotted line: passive, solid lines: active €btitroller

Closed v.s. open loop RF td
01 T T T T T T ] T T T

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

_0.1 1 L ! 1 1 1 ~ ! ] 1
0 2 4 6 8 10 12 14 16 18 20

Time (sec)

Fig. 11. Time response of the tire deflection derivatives with respect to chirp road inputs. Dotted line: passive, solid lines: active €8ritroller

order to conduct such tradeoff, 18 betweens = 10~7 and and 19 controllers”;s ( = 1, 2, ..., 19) corresponding to
0 = 40 have been chosen as follows: those #s have been designed using LMI control toolbox in

Brs = [1077 107 106 10-5 1074} Matlab [9], where
5 = =

c,=Ccv
Bs..10=[107% 107> L L L]

30 20 15 and

Bri19=[5 £ 1510 15 20 30 40] Cro =C".



LU AND DEPOYSTER: MULTIOBJECTIVE OPTIMAL SUSPENSION CONTROL 819

Closed v.s. open loop heave acc Closed v.s. open loop roll acc

2 4 6 2 4 6

Closed v.s. open loop pitch acc Left and right road inputs

0.25

0.2

0.15

0.1

0.05

0

2 4 6 2 4 6
Time (sec) Time (sec)

Fig. 12. Body heave, roll, and pitch acceleration with respect to bad bump road inputs. Dotted line: passive; solid line: semiactive.

The normg|T»(G, C;)l|2 and|| T (G, C;)|l. and their upper- of the heave, roll, and pitch in all the frequency range. The con-

bounds fori = 1, 2, ..., 19 are shown in Fig. 7. From this troller has an appealing feature of reducing the peak values in
figure, it can be found that increasigimplies increasing the middle frequency range (from 4 to 8 Hz) and a very good roll
H, norm and decreasing thié, norm. performance. The tire deflection derivative frequency response
The actualH, and H., norms of the controlled suspensionshows reduction on the peak value around wheel hop frequency
are our main concerns, for= 1, 2, ..., 19, we plot (around 10 Hz).
In the semiactive damper case, the control force is realized
1T (G, Oi)“OO_ IT2(G, Ci)ll2 by a damper. The resultant damper force is nonlinear function
1750 (G, 0)[lc I T>(G, 0)||2 of the demand active control foreeand the relative velocity

with respect tog; in Fig. 8. From this figure, it is not hard Frp. I we denote this nonline_:ar function g -), then the total
' suspension force can be written as

to find that there exist somés such that both BRP and WFP
could achieve reasonable levels. The weighted transfer func-  S(u, z,,, 2,p) = —Kszrp — CsZrp + (1, Z0p).
tions take care of the relative importance of the individual vari- Wi the ti ith q h teriza-
ables in the total cost defined in (30), the achieved heave, roll € use the time response with proper- damper characteriza

" X
and pitch accelerations, and the front and the rear tire deflectl&?\n to evaluate the balanced controllgt™ . The road profile

L - e Nput used here is the bad bump road profile, which is used in
?oimls::zzirj:%gi;f%tfgirsl:jr?:aprigegds' This individual pe\quhicle model developed at Delphi Automotive Systems. The

A controller corresponding t6 = 15 is chosen as the bal_vehicle time responses is shown in Figs. 12 and 13. The vehicle
anced controller. we denote this?:ontroller(é@” This con- achieves good performance for heave and pitch accelerations.
troller achieves t,he performances summarized i.n Table V. Due to the fact that the damping in the system is added appropri-

The frequency responses of the closed-loop systems co ge_ly, bpth body and wheel vib rgtions are attenuated very f"?‘St-
sponding toC*" can be similarly constructed as for controller fom Figs. 12 and 13, we can find that as soon as the vehicle

w b . . sses the bump, the vibration of the tire deflection completely
¢ andc” for linear dynamics. The frequency responses Cougfsappears, while the body vibrations take another 0.5 s to com-

also be seen for nonlinear vehicle dynamics by using the timFt v di
response with respect to a frequency sweeping signal. What Qg'ely disappear.
used here is the varying magnitude chirp signal defined in Sec-

tion 1. In order to conduct time domain simulation, a simulink

model of seven degrees of freedom with nonlinear suspensiomhe matrix form of seven degree-of-freedom vertical vehicle
characterizations, developed at Delphi Automotive Systems tihgiamics model simplifies the derivation of equations of
been used (see Fig. 3). The time response simulated with respections and provides insight about the system states. Using
to the magnitude varying chirp signal described in Section Id linear transformation, the original seven degree-of-freedom
are shown in Figs. 10 and 11. From the responses we can feglation of motion with road inputv as disturbance can
that C*" generally does a good job in reducing the peak valle transformed to the one using road input veloaityas

VI. CONCLUSION
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Closed v.s. open loop RF td

0.03 T T T
0.02

0.01

-0.01

-0.02

! L 1

-0.03 ! : !
3

Time (sec)

4

Fig. 13. Time response of the tire deflection with respect to bad bump road inputs. Dotted line: passive; solid line: semiactive.

disturbance. This transformed seven degree-of-freedom vehiclgs]
model are used to design an active suspension to simultaneously
achieve thefl; performance for the body accelerations and the [5]
H,, performance of the tire deflection derivatives. THe,

norm is a good measure of wheel performance but may not b

a good measure of the body performance. The balanced contrg?]
law, which achieves both body and wheel performance by[7]
trading off between BRP and WFP, are then validated through
simulation and applied to semiactive suspensions. The simu-
lation results show that the control law thus designed achieve$s]
better performance than many existing controllers for full car
models, which are mainly dealing with the ride performances.
As a by-product, our example shows that the invariant point in[9]
the quarter model case exists in the seven degree-of-freedom
model for heave and pitch motion but are not necessarily tru[elo]
for roll motion. The future work will focus on the extension of
this work to integrated vehicle dynamics control. (11]
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