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Multiobjective Optimal Suspension Control to
Achieve Integrated Ride and Handling Performance

Jianbo Lu, Member, IEEE,and Mark DePoyster

Abstract—Multiobjective optimal control strategy is pursued
here for finding feedback control laws used in controlled suspen-
sions for automotive vehicles. The balanced vehicle ride and han-
dling performances are the main concern of this paper. The ride
performance (car body performance) is characterized by an 2

system norm, and the handling performance (wheel performance)
is characterized by an system norm, and the control method
optimizes the mixed 2 performances. The 2 and
system norms used in the mixed 2 performance optimiza-
tion are scaled by the corresponding open-loop norms such that
the relative importance of the individual variables can be reflected
in the performance index for the vector variables. The comparison
between passive and controllable suspensions shows in simulation
the advantages of this optimal control strategy. The simulation re-
sult also shows that the invariant point for controlled suspensions
in the quarter car case exists in the seven degree-of-freedom model.
The control scheme was tested and validated for a test vehicle, cur-
rent paper only shows the simulation work.

Index Terms—Mixed 2 control, vehicle handling perfor-
mance, vehicle ride performance, vehicle suspension control.

I. INTRODUCTION

T HE COMPUTER-CONTROLLED suspensions for trans-
portation have been studied for decades. Many control

strategies have been proposed. A good summary can be found
in [11] and [12] for automotive applications. Various strategies
which have been pursued include different modern linear and
nonlinear control methods. For example, [1] considers adaptive
control, [2]–[4] and [7] use linear quadratic Gaussian (LQG)
strategy for automotive vehicles, [14] uses control to an
active suspension for railway vehicles. Other strategies (for
example, preview control) can also be found in the literature.

The literature in this topic is very rich, however, most of the
work is focusing on controlling vehicle vertical dynamics of
two degrees of freedom (quarter-car model) or of four degrees
of freedom (half-car model). A handful few researched how to
control vehicle vertical dynamics of seven degree-of-freedom
(full-car model); for example, see [2]–[4], [7], and [8]. Another
bias is emphasizing ride performance (good control of vehicle
body motions) and in general paying insufficient attention to
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vehicle wheel motions. In practice, the interaction between the
wheels and road surfaces plays significant role for a vehicle
to maximize its stability during handling maneuvers, to reduce
stopping distance and to reduce road damage (especially for
heavy trucks). Current advances in system-level controls de-
mands much more stringent performances for vehicle wheel
motions than before. For example, maintaining as small tire dy-
namic normal force (excursions from nominal normal force) as
possible is pursued for many integrated vehicle control systems
on top of the ride comfort requirement. This motivates the main
theme of this paper: how to design algorithms for controllable
suspensions to achieve desired vehicle body and wheel perfor-
mances, or say, to achieve a balanced ride and handling perfor-
mance.

Recently, mass production of controllable suspensions
in automotive applications is increasingly getting attention
from both auto makers and auto parts suppliers. Many auto
makers and suppliers are working together to offer controlled
suspension as an option for high-end passenger cars. One of
such example is the semiactive suspension called continuous
variable real-time damper (CVRTD), developed at Delphi
Automotive Systems, which is now commercially available
in several vehicle platforms. This commercial need revives
development activities in controlled suspensions, for example
at Delphi Automotive Systems. Current control strategies
used in Delphi’s CVRTD system are mainly based on the
well-known sky-hook damping [12] and certain wheel motion
control, together with sophisticated nonlinear gain scheduling
schemes. In order to achieve desired performances with respect
to all driving conditions, CVRTD control algorithms involved
hundreds of calibration parameters and possible patches. The
strategy has been successfully proven in vehicles.

In order to increase application efficiency, primarily tuning
control algorithms in computer simulation environment could
significantly reduce the expensive in-vehicle tuning effort. This
tuning strategy uses field tests as a supplement, i.e., as a valida-
tion tool and for small scale tuning. Along this line of thinking,
the clean sheet approaches have been sought as a potential
alternative in the future at Delphi Automotive Systems. The
clean sheet approach aims to solve the potential performance
degradation upfront, using intensive computer simulation as a
design/validation tool before in-vehicle tuning is conducted.
The current paper summarized one of these efforts. What we
want to accomplish here is to tune a CVRTD algorithm by
utilizing as much simulation as possible for achieving balanced
vehicle body and wheel performance. The strategy used here
is the so-called mixed optimal control method. This
mixed control has been studied a great deal during
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last decade (for example, see [5], [17], [16]). Using the linear
matrix inequality (short to LMI) studied in [6], [18], this mixed

control problem can be solved very efficiently. A
software toolbox for implementing the convex algorithms using
LMI is now available for Matlab users (see [9] for detail). This
toolbox is called LMI Control Toolbox. Notice that [19] studies
a “multiobjective approach” in designing an or an sus-
pension control law for a quarter-car model, which is different
from the mixed optimization approach here. Over
there, the weights used to reflect the individual performance
of the ride comfort, the road-holding and the rattle-space are
sought based on a local optimization algorithm and the weights
are then used to construct the final (or ) control law.

This paper is organized as the follows. Section II considers
the matrix form of the vertical vehicle dynamics. A linear trans-
formation is used to transfer the equation of motion to the form
good for control design. A brief discussion about vehicle perfor-
mance evaluations is included in Section III. Section IV includes
control design strategy and method. A numerical example is in-
cluded in Section V. Section VI concludes this paper.

The following notations are used in this paper. For a matrix
, means that the matrix is positive definite or all its

eigenvalues are positive numbers; means ;
denotes the matrix transpose; denotes the matrix pseudoin-
verse. For a transfer matrix , means the conjugate
transpose of the frequency response , is the
largest singular value of the frequency response evalu-
ated at frequency . is the set of all real numbers.
formulates a diagonal matrix.

II. V ERTICAL VEHICLE DYNAMICS

Assume a vehicle under study is driven in a straight road
in a steady-state condition, i.e., with constant thrust and
without brake action. In this case, the vertical dynamics of the
vehicle include the car body heave, roll, and pitch motions,
and the four wheel bounce motions. This is a typical seven
degree-of-freedom characterization of the vertical dynamics
used for controlled suspensions. If both the longitudinal and
lateral motions of the vehicle are excessive, further degrees
of freedom must be included in order to provide a reasonable
model. Three more degrees of freedom are needed: the vehicle
yaw, lateral, and longitudinal motion. That is, the resultant
system should be characterized by ten degrees of freedom.
Although this ten degree-of-freedom dynamics is useful in
integrated vehicle dynamics control, this paper focuses on
the seven degree-of-freedom dynamics. The extension of
combining the current approach with other control strategies in
controlling ten degrees of freedom of a vehicle will be studied
separately.

Notice that in Fig. 1, we assume that the spring, the damper,
the wheel at each of the four corners of the vehicle and the
sensor used to measure the relative position between the two
ends of the suspension spring are collocated. Although this
is different from the real configuration where noncollocation

Fig. 1. A vertical vehicle model of seven degrees of freedom.

spring, damper and sensor are used, transformations can
be used to convert the noncollocated configurations to the
collocated configurations without loss of generality.

Let

be the displacement vector whoseth element denotes the ab-
solute displacement of theth wheel of the vehicle, where
1, 2, 3, and 4 corresponds to the left-front, right-front, left-rear,
and right-rear wheels.

The body motion vector is defined as

where is the heave displacement of the center of gravity of the
car body (sprung mass),is the car body’s roll angle, andis
the car body’s pitch angle. Bothand are the global angular
displacements with respect to a perfect flat road surface or the
sea level.

Denote

as the vector whoseth element is the vertical displacement of
the car body in theth corner, where 1, 2, 3, and 4 corre-
sponds to the left-front, right-front, left-rear, and the right-rear
corners where the suspensions are connected.

Let be the transformation matrix relating body motion
vector to the corner position vector , i.e.,
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For the collocated configuration in Fig. 1, can be calculated
using vehicle geometry parameters as in the following:

where and are the distances from the front and rear axle
to car body center of gravity, respectively, and are half
of the front and rear wheel tracks.

The relative positions of the suspensions at the left-front, the
right-front, the left-rear, and the right-rear corners are denoted
as

which can be computed from and

(1)

Let be the total suspension force vector, which is a non-
linear function of the active control variable, the relative po-
sition vector and the relative velocity vector

(2)

Using this suspension force, the equation of motion for the
car body can be expressed as

(3)

where is the sprung mass, and are the roll and pitch
moments of inertia of the car body, respectively.

Let

then (3) can be rewritten as the following matrix form:

(4)

If we define

where is the unsprung mass at theth corner, is the th
tire stiffness, then the wheel equations of motion can be written
as the following matrix form:

(5)

where is the road profile vector. Equations (4) and (5) consist
of the mathematical description of a seven degree-of-freedom
vehicle vertical dynamics.

Using small motion assumption, the suspension forces in (2)
can be linearized around the steady-state operation point. That
is, can be approximated as a linear function of
the relative positions, the relative velocities and the control vari-
able

(6)

where could be the active suspension force or the semiactive
suspension damping force, and

with as the passive suspension spring rate at theth corner,
and as the passive damping rate at theth corner.

Plugging (6) into (4) and (5) leads to the following matrix
form of the linearized vehicle vertical dynamics:

(7)

If we introduce a new variable

then (7) can be rewritten as

(8)

where

If we further define

Equation (8) can be expressed in the following state–space form:

(9)

where
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Notice that is invertible if and only if the matrix in the
equation of motion (8) is invertible. If is invertible, the inverse
of can be written as

(10)

Since any nonsingular and linear transformation does not
change system dynamics, we want to change (9) from using

as disturbance to using as disturbance. The following
theorem discusses this.

Theorem 1: If matrix in the equation of motion (8) is in-
vertible, then there exist state transformations

for any nonsingular matrix with proper dimension, such that
(9) can be changed to

(11)

Proof: Consider the transformation

(12)

Plugging (12) into (9) leads to

(13)

since the inverse of in (9) exists if is invertible. Hence, we
can eliminate term in (13) by choosing

i.e., (13) can be simplified to (11) with

Hence, the theorem is true.
The above result shows that the existence of linear transfor-

mations which can alter the state–space description of the ve-
hicle dynamics from using road profileas disturbance to using
the road profile velocity as disturbance. One advantage of
using to replace is due to the consideration thathas richer
dynamic components than. Therefore, is much closer to
white noise than for actual road profiles, see [11] and [12] for
more discussion. Since the state–space control algorithms con-
sidered here is a model-based control strategy, a Kalman-like
state estimation or observer is inevitably embedded in the con-
trol algorithm. This state estimator typically works well if the
system disturbance is close to white noise process.

Now let us consider choosing state transformation. The
system states assembling (9) uses as the system
states. There are infinity numbers of ways to choose other
combinations. In order to maximize the use of the measured
sensor signals, it is possible to include as part of the
states. For example, we could choose 1) or 2)

. State set 1) actually includes 16 variables, which
means two variables are redundant. State set 2) seems okay.,
but does introduce more disturbance terms ( might
appear in the system description). In the following, instead of
directly using as part of system states, a 3 1 vector
will be generated from this 4 1 vector .

Fig. 2. Motion vectorq of the heave, roll and pitch for the fictitious wheel
frame, and the motion vectorq for the car body.

Let us use a fictitious rigid frame to connect the four wheels
of the vehicle, i.e., constraints posed on the four independent
wheels such that they move together in a rigid fashion (see Fig.
2). This fictitious rigid wheel frame has heave, roll, and pitch
angular motions. Denote them as

which can be uniquely determined from the wheel displacement
. The difference between the heave, roll, and pitch of the car

body and the heave, roll, and pitch of this fictitious wheel frame
is called the relative heave, roll, and pitch. They are defined as
the following vector variable:

and the relative position can be expressed as

(14)

Since the actual wheels are moved independently, (14) is gen-
erally not true. Considering the fact that any motion can be de-
composed as rigid motion and a nonrigid motion, the actual
wheel motion variables might be written as

(15)

with

Hence, generally speaking, we have

(16)

The question now is how to compute and . Since
is a nonsquare matrix, by using a pseudoinverse,can be

decomposed along the direction defined by

(17)
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By comparing (15) and (17), we have

(18)

With decomposition (18), in (16) can be rewritten as

(19)

Considering

(19) implies

i.e., the 3 1 vector is linearly related to the 4 1 vector
.

Now, we include as part of the new states and the total state
vector is defined as

where

(20)

and the transformation matricesand can be expressed as

III. V EHICLE PERFORMANCE

Generally speaking, a vehicle’s ride comfort (body perfor-
mance) and its road holding capability (wheel performance) are
conflicting objectives [12]. Ride comfort requires that the car
body achieves small acceleration levels and ideally to achieve
zero car body accelerations. Therefore, the body performance
requires minimizing the acceleration levels for the car body’s
heave, pitch, and roll motions with respect to typical road pro-
files. We should call this body regulation performance (BRP).

The handling performance, or the wheel performance implies
that the wheel normal forces are kept as constant as possible.
Physically, this means that wheels follow well with the road
profiles, so as to achieve as constant tire deflection as possible.
We should call this desired wheel behavior as wheel following
performance (WFP).

The performance variables for BRP can be chosen as the ac-
celeration of the heave, roll, and pitch accelerations. The tire
deflection derivative is one possible variable to measure WFP
due to the fact that the small tire deflection derivatives imply

small variations of the tire deflections. Notice that the so-called
warped pattern leads to

and

however, the warped pattern rarely happens in reality.
In order to mathematically characterize BRP and WFP,

both time and frequency responses can be used. The
traditional frequency response is mainly dealing with a
single-input–single-output system. In order to evaluate perfor-
mances for seven degree-of-freedom vehicles using classical
single-loop techniques, one requires decomposing the perfor-
mances into sets of single-loop performances. For example the
frequency response of the vehicle with respect to heave road
input, roll road input, and pitch road input. For the case where
road profiles induce combined heave, roll, and pitch motions,
this single-loop technique may not be appropriate. Frequency
responses of multiinput–multioutput systems, reflected by
singular values, are required.

If the transfer functions from theth road input to the
heave, roll, and pitch accelerations are denoted as ,

, and , then the following performance measure
will be used to characterize BRP

(21)

The WFP can be characterized by the largest and the smallest
singular values of , which is the transfer matrix from
the road input velocity vector to the tire deflection derivative
vector

We denote them as

The frequency responses are well defined in linear systems. If
a system has significant nonlinearities, time responses are more
appropriate for performance evaluation. A time response with
respect to a frequency-sweeping time sequences could also pro-
vide certain frequency-response like characterization. For this
consideration, a magnitude varying chirp signal road profile is
used. This signal is shown in Fig. 4, which has frequency con-
tents from 0 to 15 Hz. This signal for left and right side of the
wheels has a frequency shift in order to excite the pitch and roll
modes of the car body.

The time responses with respect to typical road profiles are
also used. The actually measured road inputs are recorded data
from typical road surface. In this paper a bad bump road profile
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Fig. 3. Simulink model of a seven degree-of-freedom vehicle.

Fig. 4. Time response of the right and left road inputs.

data is used. The vehicle is assumed to travel straight in a con-
stant speed of 60 km/h.

IV. M ULTIOBJECTIVE OPTIMAL CONTROL STRATEGY

Consider the plant described in (11)

(22)

Let the sensor measurement be expressed as

(23)

The goal here is to find an algorithmof the following form:

(24)
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to limit the peak frequency responses, which is measured by
the so-called norm of the involved transfer matrix of the
following variable:

and the variance of the following variable with respect to unit
covariance white noise disturbance:

The latter is also equivalent to a quadratic criterion in frequency
domain and is called a norm criterion.

If the loop is closed by using to control the plant based
on the sensor signal, then the closed-loop system can be ex-
pressed as

1 2

2 22

1 2 (25)

with

Denote the closed-loop transfer functions fromto in (25)
as and from to in (25) as . The
norm of is the following quadratic criterion, which is
equivalent to the variance of the signalwith respect to a unit
covariance white noise disturbance

where denotes the frequency response of
. The norm of can be computed from

the following:

where denotes the frequency response of
. The norm represents the peak magnitude

(peak singular value) of the frequency response of a transfer
matrix. Another explanation of is the square
root of the energy amplification factor of with respect to all
possible inputs

has nonzero but finite energy

TABLE I
SUMMARY OF THE VEHICLE PARAMETERS

TABLE II
SUMMARY OF THE PASSIVE SUSPENSIONPERFORMANCE

The norm of does not exceed a given perfor-
mance level if and only if there exists a

such that the following linear matrix inequality is true [6], [18]:

(26)

The norm of does not exceed a given performance
level if and only if there exists a

such that the following linear matrix inequality is true:

(27)

(28)

Finding a to satisfy (26) or (28) can be solved by the well-
known control or control theory. However, finding a
controller to simultaneously satisfy (26) and (28) is still an
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Fig. 5. Frequency response for the body heave, roll, and pitch accelerations with respect to road velocity inputs. Frequency response for tire deflection derivatives.
Dotted line: passive, solid line: active controllerC .

TABLE III
SUMMARY OF THE PERFORMANCEUSING THE WFP-EMPHASIZED

CONTROLLERC

open problem and it may be computationally intractable. For
computational tractability, a single Lyapunov matrix

is sought in the above conditions, see [9] for detail. This sim-
plification leads to a performance upper bound for bothand

norms of the closed-loop system (25). Denote the corre-
sponding upper bounds for and
as

The recently well-studied mixed control theory finds
controllers such that those upper bounds are optimized or con-
strained.

Mixed Control Problem: For a given plant , solve
for an active controller from any of the following optimization

problems for given performance level, , or weight pair
( )

By using the linear matrix inequality solver (for example, LMI
control toolbox associated with Matlab), the solutions for the
above problem can be found, see [9]. This problem is trans-
ferred to a convex optimization problem and globally optimal
controller can be found.

Notice that the performance bounds or is required to
be feasible in order to have a solution for the mixed
control problem. Hence, the choice of those bounds are very
important in shaping the performances of the final closed-loop
systems.

Since and are both vector variables, the performance
achieved by the optimal controller might not reflect the per-
formance for the individual variables. We are really interested
in each element in and . The following variable normal-
ization uses the corresponding open-loop norms to weight the
corresponding contributions of the individual variables in total

and norms. Let be the th element of , and
be the th element of . Denote the transfer function

from to as for , and from
to as for . Assume the plant is
stable, i.e., the open-loop transfer functions
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Fig. 6. Frequency response of heave, roll, and pitch accelerations, and one tire deflection derivative. Dotted lines: passive, solid line: active controllerC .

TABLE IV
SUMMARY OF THE PERFORMANCEUSING THE BRP-EMPHASIZED

CONTROLLERC

have finite and norms.
The th normalized variable for theth element of is de-

fined as

or equivalently, we are dealing with the following transfer ma-
trix in the mixed control problem:

Similarly, the th normalized variable for theth element of
is defined as

or equivalently, we are dealing with the following transfer ma-
trix in the mixed control problem:

Let us now choose the and performance variables
in the suspension control design. Consider the seven degree-of-
freedom vehicle model shown in Fig. 1. The ride control per-
formance BRP aims to reduce the acceleration levels of the car
body on almost the whole frequency range, i.e., good vibra-
tion isolation. As we know for the quarter-car model, there is
an invariant point (frequency) where the magnitude of the in-
volved frequency response can not be affected by active con-
trollers. Since norm optimization wants to limit the peak
value of the frequency response, this invariant point becomes a
major barrier for the achievable performance in control design.
By using a quarter-car model [13] actually showed that the con-
troller designed for performance did not achieve good ride
performance at all. Therefore, it is not reasonable to characterize
the BRP performance using norm. Also [11], [12] support
root mean square (rms) or -type of performance metric for
BRP. We characterize BRP by the norm for the following
variable:

On the other hand, the wheel control performance aims to re-
duce the wheel dynamic normal force. That is, we would like
to keep the magnitude of the frequency response of the involved
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Fig. 7. H andH norms and their upper bounds at each control design.

Fig. 8. Tradeoff between body and wheel performance.

transfer function as constant as possible within all the frequency
region. Hence, an norm performance for WFP is appro-
priate and we define

The sensors used here are the relative position sensors, which
measure . Note that includes the steady-state portion of

the displacements due to static sprung mass or the dead load. In
order to remove this steady-state offset, a high-pass filter can be
used. However, in this paper, the time derivative is used.
That is, instead of feeding back the high-pass-filtered to
the control algorithm, is used. Both hardware differentiation
and software differentiation can be used to obtainfrom .
Hence, the measurement for control algorithms is

(29)
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Fig. 9. Tradeoff between body heave, roll, and pitch accelerations, and the front- and rear-wheel tire deflection derivatives.

TABLE V
SUMMARY OF THE PERFORMANCEUSING THEBALANCED CONTROLLERC

Using the system state, can be expressed as in (23) with

V. NUMERICAL EXAMPLE

Consider the seven degree-of-freedom vehicle depicted in
Fig. 1. The vehicle parameters are summarized in Table I. The

and norms of the corresponding transfer matrices for
the passive suspensions can be computed as in Table II.

The control goal here is to compute the active control signal
, based on the sensor measurementdefined in (29), such that

the following cost function for a fixed is minimized:

(30)

where the normalized transfer matrices are

Notice that for small , the optimal controller tries to suppress
the peak values in the frequency responses for the wheel perfor-
mance with less concern for the body performance. A controller
corresponding to small should be called a WFP-emphasized
controller, denote it as . One of such controllers is the one
corresponding to 10 . Fig. 5 shows the singular values of
the heave, roll, and pitch acceleration transfer functions with re-
spect to the road profile velocities. It can be seen that although
the peak values of the transfer function of the tire deflection
derivatives are reduced, the body acceleration levels are actu-
ally increased significantly over the passive suspension in al-
most all the frequency region. That is, the good wheel perfor-
mance is achieved in the expense of the ride performance. This
result is consistent with the nature of the wheel emphasized per-
formance. Table III summarizes the performance indexes corre-
sponding to controller .

For large , the controller tries to reduce the norm for the
body heave, roll, and pitch accelerations. We should call this
BRP-emphasized controller. One of such controllers is the one
corresponding to 40, denoted as . Fig. 6 shows that the
frequency response of the heave, roll, and pitch accelerations
are reduced dramatically in comparison with the passive sus-
pension. However, the tire deflection derivative frequency re-
sponses even get worse than the passive suspension. That is, the
good body performance is achieved in the expense of the wheel
performance. Table IV summarizes the performance indexes for
controller . An invariant point (see [10] for definition) in fre-
quency response for both pitch and heave motions can be found,
where both and active and passive suspension share the same
magnitude for their singular values. Notice that this is not nec-
essarily true for the roll motion. Further study is needed in order
to explain this.

The above control designs correspond to two extremes,
which shows potential tradeoffs between BRP and WFP. In
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Fig. 10. Time response of the body heave, roll, and pitch with respect to chirp road inputs. Dotted line: passive, solid lines: active controllerC .

Fig. 11. Time response of the tire deflection derivatives with respect to chirp road inputs. Dotted line: passive, solid lines: active controllerC .

order to conduct such tradeoff, 19s between 10 and
40 have been chosen as follows:

and 19 controllers s ( ) corresponding to
those s have been designed using LMI control toolbox in
Matlab [9], where

and
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Fig. 12. Body heave, roll, and pitch acceleration with respect to bad bump road inputs. Dotted line: passive; solid line: semiactive.

The norms and , and their upper-
bounds for are shown in Fig. 7. From this
figure, it can be found that increasingimplies increasing the

norm and decreasing the norm.
The actual and norms of the controlled suspensions

are our main concerns, for , we plot

with respect to in Fig. 8. From this figure, it is not hard
to find that there exist somes such that both BRP and WFP
could achieve reasonable levels. The weighted transfer func-
tions take care of the relative importance of the individual vari-
ables in the total cost defined in (30), the achieved heave, roll,
and pitch accelerations, and the front and the rear tire deflection
derivatives should obey the similar trends. This individual per-
formance trends can be found in Fig. 9.

A controller corresponding to 15 is chosen as the bal-
anced controller, we denote this controller as . This con-
troller achieves the performances summarized in Table V.

The frequency responses of the closed-loop systems corre-
sponding to can be similarly constructed as for controllers

and for linear dynamics. The frequency responses could
also be seen for nonlinear vehicle dynamics by using the time
response with respect to a frequency sweeping signal. What we
used here is the varying magnitude chirp signal defined in Sec-
tion III. In order to conduct time domain simulation, a simulink
model of seven degrees of freedom with nonlinear suspension
characterizations, developed at Delphi Automotive Systems has
been used (see Fig. 3). The time response simulated with respect
to the magnitude varying chirp signal described in Section III
are shown in Figs. 10 and 11. From the responses we can find
that generally does a good job in reducing the peak value

of the heave, roll, and pitch in all the frequency range. The con-
troller has an appealing feature of reducing the peak values in
middle frequency range (from 4 to 8 Hz) and a very good roll
performance. The tire deflection derivative frequency response
shows reduction on the peak value around wheel hop frequency
(around 10 Hz).

In the semiactive damper case, the control force is realized
by a damper. The resultant damper force is nonlinear function
of the demand active control forceand the relative velocity

. If we denote this nonlinear function as , then the total
suspension force can be written as

We use the time response with proper damper characteriza-
tion to evaluate the balanced controller . The road profile
input used here is the bad bump road profile, which is used in
vehicle model developed at Delphi Automotive Systems. The
vehicle time responses is shown in Figs. 12 and 13. The vehicle
achieves good performance for heave and pitch accelerations.
Due to the fact that the damping in the system is added appropri-
ately, both body and wheel vibrations are attenuated very fast.
From Figs. 12 and 13, we can find that as soon as the vehicle
passes the bump, the vibration of the tire deflection completely
disappears, while the body vibrations take another 0.5 s to com-
pletely disappear.

VI. CONCLUSION

The matrix form of seven degree-of-freedom vertical vehicle
dynamics model simplifies the derivation of equations of
motions and provides insight about the system states. Using
a linear transformation, the original seven degree-of-freedom
equation of motion with road input as disturbance can
be transformed to the one using road input velocityas
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Fig. 13. Time response of the tire deflection with respect to bad bump road inputs. Dotted line: passive; solid line: semiactive.

disturbance. This transformed seven degree-of-freedom vehicle
model are used to design an active suspension to simultaneously
achieve the performance for the body accelerations and the

performance of the tire deflection derivatives. The
norm is a good measure of wheel performance but may not be
a good measure of the body performance. The balanced control
law, which achieves both body and wheel performance by
trading off between BRP and WFP, are then validated through
simulation and applied to semiactive suspensions. The simu-
lation results show that the control law thus designed achieves
better performance than many existing controllers for full car
models, which are mainly dealing with the ride performances.
As a by-product, our example shows that the invariant point in
the quarter model case exists in the seven degree-of-freedom
model for heave and pitch motion but are not necessarily true
for roll motion. The future work will focus on the extension of
this work to integrated vehicle dynamics control.

ACKNOWLEDGMENT

The authors wish to thank Dr. R. Longhouse and Dr. A. Hac,
Delphi Automotive Systems, for discussions which were valu-
able to the completion of the work, and Dr. D. Hrovat at Ford
Motor Company for reading the draft of this paper and construc-
tive suggestions.

REFERENCES

[1] A. Alleyne and J. K. Hedrick, “Adaptive control for active suspension,”
ASME Advanced Automotive Technol., vol. 52, pp. 7–13, 1993.

[2] M. B. A. Abdel-Hardy and D. A. Crolla, “Theoretical analysis of active
suspension performance using a four-wheel model,”Proc. Inst. Mech.
Eng., vol. 203(D), pp. 125–135, 1989.

[3] , “Active suspension control algorithms for a fourwheel vehicle
model,” Int. J. Vehicle Design, vol. 13, no. 2, pp. 144–158, 1992.

[4] P. Barak, “On a ride control algorithm for heave, pitch and roll motions
of a motor vehicle,” Ph.D. dissertation, Dept. Mech. Eng., Wayne State
Univ., Detroit, MI, 1985.

[5] D. S. Bernstein and W. M. Haddad, “LQG control with anH per-
formance bound: A Riccati equation approach,”IEEE Trans. Automat.
Contr., vol. 34, p. 293, Feb. 1989.

[6] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequality Syst. Contr. Theory. Philadelphia, PA: SIAM, 1995.

[7] P. Barak and D. Hrovat, “Application of the LQG approach to design
of an automotive suspension for three dimensional vehicle models,” in
Proc. Int. Conf. on Advanced Suspensions. London, U.K.: IMECHE,
1988.

[8] R. M. Chalasani, “Ride performance potential of active suspension sys-
tems—Part II: Comprehensive analysis based on a full-car model,” pre-
sented at the ASME Symp. Simulation Ground Vehicles Transportation
Syst., Anaheim, CA, 1986.

[9] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali,LMI Control
Toolbox for Use With Matlab. Natick, MA: The Mathworks Inc., 1995.

[10] J. K. Hedrick and T. Butsuen, “Invariant properties of automotive
suspensions,” presented at the IMechE Conf. Advanced Suspensions,
London, U.K., 1988.

[11] D. Hrovat, “Application of optimal control to advanced automotive
suspension design,”ASME J. Dyn. Syst., Measurement, Contr., pp.
328–342, 1993.

[12] , “Survey of advanced suspension developments and related op-
timal control applications,”Automatica, pp. 1781–1816, 1997.

[13] A. G. DeJager, “Comparison of two methods for the design of active
suspension systems,”Optimal Contr. Applicat. Methods, vol. 12, pp.
173–188, 1991.

[14] H. A. Hindi, B. Hassibi, and S. P. Boyed, “MultiobjectiveH =H -Op-
timal control via finite dimensional Q-parameterization and linear ma-
trix inequalities,” inProc. Amer. Contr. Conf., 1998, pp. 3244–3248.

[15] T. Hirata, S. Koizumi, and R. Takahashi, “H control of railroad vehicle
active suspension,”Automatica, pp. 13–24, 1995.

[16] P. P. Khargonekar and M. Rotea, “MixedH =H control: A convex
optimization approach,”IEEE Trans. Automat. Contr., vol. 36, pp.
824–837, 1991.

[17] D. Mustafa, “Relations between maximum entropy=H control and
combinedH =LQG control,” Syst. Contr. Lett., vol. 12, p. 193, 1989.

[18] R. E. Skelton, T. Iwasaki, and K. Grigoriadis,A Unified Algebraic Ap-
proach to Control Design. London, U.K.: Taylor and Francis, 1997.

[19] R. H. Takahashi, J. F. Camino, D. E. Zampieri, and P. L. D. Peres, “A
multiobjective approach forH andH active suspension control,” in
Proc. Amer. Contr. Conf., vol. 1, 1998, pp. 48–52.



LU AND DEPOYSTER: MULTIOBJECTIVE OPTIMAL SUSPENSION CONTROL 821

Jianbo Lu (S’93–M’97) received the M.S.M.E. de-
gree from Arizona State University, Tempe, and the
Ph.D. degree in aerospace engineering from Purdue
University, West Lafayette, IN.

From 1986 to 1990, he was an Engineer at China
Academy of Railway Sciences. From 1997 to 2000,
he was with Delphi Automotive Systems. In May
2000, he joined Ford Motor Company, where he is
currently involved in research and development for
advanced automotive controls.

Dr. Lu is a Member of ASME and Tau Beta Pi. He
received the Henry Ford Technology Award, the highest technical achievement
award at Ford Motor Company, for his contributions in vehicle dynamics and
controls, in September 2002.

Mark DePoyster is currently a Chief Engineer, Advanced Chassis Control En-
gineering, Engine Management and Chassis Systems, Delphi Automotive Sys-
tems.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


