
 

 

 

  

Abstract — This paper presents an approach to develop a 

driver advisory system that warns of driving conditions close to 

the limit of vehicle handling. The advisory system utilizes 

intelligence inferred from vehicle states, measured signals, and 

the other computed variables used for active safety and vehicle 

control purposes. The onboard computing resources, 

algorithms, and sensors used to deduce such intelligence exist in 

current electronic stability control systems.   

I. INTRODUCTION 

RIVING safety involves the driver, vehicle, electronic 

control, road, and the other subjects either moving or 

stationary around a driven vehicle [1]. As described in 

[2], driver error is cited as the cause of 45% to 75% of 

roadway collisions and as a contributing factor in a majority 

of all collisions.  

  The main objective of the existing vehicle electronic 

control systems is to facilitate the driving task by identifying 

driver intent and aiding the driver by controlling the vehicle 

to achieve the driver intent safely, robustly, and smoothly. 

Effectiveness of electronic control systems is significantly 

increased when the driver and the electronic control work 

together towards the same accident avoidance goal and to 

maximize the accident avoidance capability of the driver-in-

the-loop vehicle as a system. One approach to achieve this is 

to provide timely clear and transparent advisory information 

to a driver such that a responsible driver can respond 

accordingly. Such advisory information can be gathered or 

computed from sensors normally found on a vehicle, which 

implements a bilateral closed-loop control between the 

driver and the electronic control. Namely, the electronic 

control follows the driver intent and the driver responds to 

the advisory information from the electronic control to 

modify his drive inputs (such as dropping throttle, easing 

steering inputs, etc.). In this way a seamless coordination 

between the driver and the electronic control is possible and 

it is likely to minimize the effect of the potential safety 

hazards due to driver errors through the collective actions of 

the driver and the electronics.  

  This paradigm is not new. Lane-departure Warning (LDW) 

uses a vision sensor to detect a vehicle’s position relative to 

a lane and warn the driver of an unintentional lane departure 

[4, 5]. The Forward Collision Warning system (FCW) [6] 

uses environmental sensors to detect potential safety hazards 

in the front of a vehicle and warn the driver in advance. 

However, existing driver warnings operate during steady-
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state or quasi-steady-state driving conditions. This paper 

considers warnings that occur close to the handling limit, a 

driving or maneuvering condition in which vehicle stability 

controls usually intervene.  

  In addition to problems encountered near the handling 

limit, the driver advisory system approach can also be used 

to improve fuel economy, i.e., a system which can use 

advising and/or coaching to help the driver to learn driving 

habits that conserve fuel [7, 29].    

  This paper focuses on using data from vehicle stability 

controls to provide real-time warnings when the vehicle 

approaches the handling limit. It is part of a cluster of 

warning functions defined as an Intelligent Personal Minder 

(IPM) system. Generally speaking, the intelligence 

computed for the IPM system can be sent to warn or to 

advise a driver through various devices including a haptic 

pedal, a heads-up-display, an audio warning device, etc.  

Figure 1 depicts the interaction of the IPM system with the 

other subsystems and functions.   

 
Fig. 1. The block diagram of a vehicle control system 

including an intelligent personal minder 

  For any control system, the plant model plays an essential 

role in designing an effective control strategy. Similarly, a 

driver model is important for generating effective and 

appropriate driver advisory signals. Hence the driving style 

characterization is needed. This paper discusses a method 

identifying drivers' characteristics based on his or her 

vehicle handling capability. Driver modeling and driver 

behavior characterization have been studied intensively [8-

17], however; the current paper suggests a unique approach 

in which the driving behavior/style and/or the driving 

experience level is deduced in real-time based on the 

frequency and the duration of driving close to the handling 

limit. 

  The paper is organized as follows. Section II provides a 

brief discussion about the variables used for vehicle stability 

controls including anti-lock brake system (ABS), traction 

control system (TCS), and electronic stability controls 
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(ESC). The handling limit minder (HLM) is disclosed in 

section III that determines how far away a driving condition 

is from the limit handling. Section IV provides a method to 

characterize the driving behavior. Conclusions are presented 

in Section V. 

II. A BRIEF DISCUSSION ON VEHICLE STABILITY CONTROLS 

  A vehicle's handling determines the vehicle's ability to 

corner and maneuver [18-21]. The vehicle needs to stick to 

the road with its four tire contact patches in order to 

maximize its handling capability. A tire which exceeds its 

limit of adhesion is either spinning, skidding or sliding. A 

condition where one or more tires exceed their limits of 

adhesion is called a limit handling condition and the 

adhesion limit is called a handling limit in this paper.  

  In order to compensate vehicle control in case a driver is 

unable to control the vehicle beyond the handling limit, 

electronic stability control (ESC) was designed to 

redistribute tire forces to generate a moment that can 

effectively turn the vehicle consistent with the driver’s 

steering request. Namely, to control the vehicle to avoid 

understeer and oversteer conditions.  

  Since its debut in 1995, ESC systems have been 

implemented in various platforms [22,23]. Phasing in during 

model year 2010 and achieving full installation by model 

year 2012, Federal Motor Vehicle Safety Standard 126 

requires ESC systems on any vehicle with gross weight 

rating below 10,000 lb. 

  ESC system is implemented as an extension of ABS system 

and all-speed TCS system. It provides the yaw and lateral 

stability assist to the vehicle dynamics centered around the 

driver's intent. It proportions brake pressure (above or below 

the driver applied pressure) to individual wheel(s) so as to 

generate an active moment to counteract the unexpected yaw 

and lateral sliding motions of the vehicle. This leads to 

enhanced steering control at the handling limits for any 

traction surface during braking, accelerating or coasting.   

  Detection of a limit handling condition can be done using 

data already existing in the ESC system, so new sensors are 

not required. Consider a vehicle equipped with an ESC 

system using a yaw rate sensor, a steering wheel sensor, a 

lateral accelerometer, wheel speed sensors, the master 

cylinder brake pressure sensor, a longitudinal accelerometer, 

etc. The vehicle motion variables are defined in the 

coordinate systems as defined in ISO-8855 [24], where a 

frame fixed on the vehicle body has its vertical axis up, 

longitudinal axis along the longitudinal direction of the 

vehicle body, and a lateral axis pointed from the passenger 

side to the driver side.   

  Generally speaking, vehicle level feedback controls can be 

computed from the individual motion variables such as the 

yaw rate, the sideslip angle, or their combinations together 

with arbitrations among other control commands such as  

driver braking, engine torque request, ABS, and TCS. In the 

following, the vehicle system level control commands are 

discussed to certain details to facilitate the sequential 

discussions.   

  The well-known bicycle model captures the vehicle 

dynamics, its yaw rate 
zω  along the vertical axis of the 

vehicle body and its sideslip angle 
rβ  defined at its rear 

axle, obey the following equations 
1

1

( )

( ) ( )

z z f f r zt x r r r z

x r x r r z z x f r z x r r

I b c b v b c M

M v v b v c b v c

ω β ω δ β

β β ω ω β ω δ β

−

−

= − + − + +

+ + + = − + − −

 

   

(1) 

where xv is the vehicle's travel speed, M  and 
zI  are the 

total mass and the yaw moment of inertia of the vehicle, fc  

and rc are the cornering stiffness of the front and rear tires,  

fb  and 
rb   are the distances from the center of gravity of the 

vehicle to the front and rear axles,  
f rb b b= + , and 

zM  is the 

active moment applied to the vehicle, and δ  is the front 

wheel steering angle.  

  A target yaw rate
ztω and a target sideslip angle 

rtβ , used to 

reflect the driver's steering intent,  can be calculated from (1) 

using the measured steering wheel angle δ  and the 

estimated travel velocity xv  as the inputs. In such a 

computation, we assume that the vehicle is driven on a road 

of normal surface condition (e.g., high friction level with 

nominal cornering stiffness fc  and rc ). Signal 

conditioning, filtering, and nonlinear corrections for steady 

state limit cornering are also performed in order to fine tune 

the target yaw rate and the target sideslip angle. Thus 

calculated target values characterize the driver's intended 

path on a normal road surface. 

  The yaw rate feedback controller is essentially a feedback 

controller computed from the yaw error (the difference 

between the measured yaw rate and the target yaw rate). If 

the vehicle is turning left and
z zt zdbosω ω ω≥ + (where 

zdbosω  

is a time varying deadband), or the vehicle is turning right 

and
z zt zdbosω ω ω≤ − , the vehicle is oversteering and 

activating the oversteer control function in ESC. For 

instance, the active torque request (applied to the vehicle for 

reducing the oversteer tendency) might be computed as in 

the following simple format: 

during a left turn: min(0, ( ))

during a right turn: max(0, ( ))

z os z zt zdbos

z os z zt zdbos

M k

M k

ω ω ω

ω ω ω

• = − − −

• = − − +
(2) 

where osk  is a speed dependent gain which might be 

defined as in the following 

0 ( ) dbu dbl
os x xdbl

xdbu xdbl

k k
k k v v

v v

−
= + −

−
 (3) 

with parameters 
0 , , , ,dbl dbu xdbl xdbuk k k v v  tunable. 

  If 
z zt zdbusω ω ω≤ −  (where 

zdbusω  is a time varying 

deadband) when the vehicle is turning left or 

z zt zdbusω ω ω≥ +  when the vehicle is turning right, the 

understeer control function in ESC is activated.  The active 

torque request can be computed as in the following 

during a left turn: max(0, ( ))

during a right turn: min(0, ( ))

z us z zt zdbus

z us z zt zdbus

M k

M k

ω ω ω

ω ω ω

• = − − +

• = − − −
  (4) 

44



 

 

 

where usk  is a tunable parameter. 

  The sideslip angle controller is a supplementary feedback 

controller to the aforementioned oversteer yaw feedback 

controller. It compares the sideslip angle estimation rβ  to 

the target sideslip angle rtβ . If the difference exceeds a 

threshold rdbβ , the sideslip angle feedback control is 

activated. For instance the active torque request is calculated 

as in the following simple format: 

 during a right turn and if 0 :

min(0, ( ) )

 during a left turn and if 0 :

max(0, ( ) )

r

z ss r rt rdb sscmp rcmp

r

z ss rt rdb sscmp rcmp

M k k

M k k

β

β β β β

β

β β β β

• ≥

= − − − −

• <

= − − + −

 

 

(5) 

where ssk  and sscmpk  are tunable parameters and rcmpβ  is a 

compensated time derivative of the sideslip angle. 

  Other feedback control terms based on variables such as 

the yaw acceleration and the sideslip gradient can be 
similarly generated.  When the dominant vehicle motion 

variable is either the yaw rate or the sideslip angle, the 

aforementioned active torque can be directly used to 

determine the necessary control wheel(s) and the amount of 

brake pressures to be sent to corresponding control wheel(s). 

If the vehicle dynamics are dominated by multiple motion 
variables, control arbitration and prioritization will be 

conducted.  The final arbitrated active torque is then used to 

determine the final control wheel(s) and the corresponding 

brake pressure(s). For example, during an oversteer event, 

the front outside wheel is selected as the control wheel, 

while during an understeer event, the rear inside wheel is 
selected as the control wheel. During a large side-slipping 

case, the front outside wheel is always selected as the 

control wheel. When both the side slipping and oversteer 

yawing happen simultaneously, the amount of the brake 

pressure will need to computed  by integrating both yaw 
error and the sideslip angle control commands. 

  Besides the above cases where the handling limit is 

exceeded due to the driver's steering maneuvers, a vehicle 

can reach its limit handling condition in its longitudinal 

motion direction. For example, braking on a snowy and icy 

road can lead to locked wheels which increases the stopping 
distance of the vehicle; open throttling on a similar road can 

cause the drive wheels to spin without moving the vehicle 

forward. For this reason, the handling limit here is also 

loosely used for those non-steering driving conditions. That 

is, the conditions where the tire longitudinal braking or 

driving forces reach their peak values are also included in 
our definition of the handling limit. 

  The ABS [25,26] function monitors the rotational motion of  

the individual wheels in relation to the vehicle's travel 

velocity which can be characterized by the longitudinal slip 

ratios iλ , with 1, 2,3, 4i =  for the front-left, front-right, rear-

left and rear-right wheels, computed as in the following 

1 1
1

min

2 2
2

min

3 3 4 4
3 4

min min

1
max(( )cos( ) ( )sin( ), )

1
max(( )cos( ) ( )sin( ), )

1, 1
max( , ) max( , )

x z f y z f

x z f y z f

x z r x z r

v t v b v

v t v b v

k

v t v v t v

κ ω
λ

ω δ ω δ

κ ω
λ

ω δ ω δ

κ ω ω
λ λ

ω ω

= −
− + +

= −
+ + +

= − = −
− +

 (6) 

where ft  and rt   are the half tracks for the front and rear 

axles, iω  is the ith wheel speed sensor output, iκ is the ith 

wheel speed scaling factor, yv  is the lateral velocity of the 

vehicle at its c.g. location, and minv  is a preset parameter 

reflecting the allowable minimum longitudinal speed. Notice 
that (6) is only valid when the vehicle is not in the reverse 

driving mode.  When the driver-initiated braking generates 

too much slip (e.g., 20%i bpλ λ− ≥ = ) at a wheel, the ABS 

module will release the brake pressure at that wheel.   

  Similarly, during a large throttle application causing a large 

slip on the ith driven wheel, TCS module will request engine 

torque reduction and/or brak pressure applied to the opposite 
wheel at the same axle. 

  Consequently, ABS or TCS activations can be predicted by 

monitoring how close iλ s are from bpλ and tpλ .  

III. HANDLING LIMIT MINDER 

  While the aforementioned ESC (including ABS and TCS) 
is effective in achieving its safety goal, further enhancement 

is still possible. For example, augmentation of ESC systems 

is desirable for roll stability control [27, 28]. On the other 

hand, the appropriate correction withch ESC tries to make 

might be counteracted by a human driver; or ESC system is 

activated to control the vehicle to follow an erroneous 
driver's intent. For example, an excessively speeding 

vehicle, whose tire forces go far beyond the traction 

capability of the road and the tires, might not be able to 

avoid an understeer accident even with the ESC 

intervention; a very aggressive steering input leads to a 
potential rollover event which might not be effectively 

controlled by the ESC system functions alone.  This paper 

introduces an integration of the driver and the ESC system 

such that they work cooperatively towards an enhanced 

control performance of the driver-in-the-loop system.  

  The proposed Handling Limit Minder (HLM) determines 
how close the current driving condition is to the handling 

limit. Generally speaking, accurate determination of the 

handling limit conditions would involve direct measurements 

of road and tire characteristics or very intensive information 

from many related variables if direct measurements are not 

available. Currently, both of the methods are not mature 
enough for real-time implementation.  

  Due to the feedback feature, ESC systems can determine the 

potential limit handling conditions through monitoring the 

motion variables of a vehicle, for example, those described in 

the last section.     
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  When the motion variables deviate from their reference 

values by certain amount (e.g., beyond certain deadbands),  

the ESC systems start to compute differential braking control 
command(s) and determine control wheel(s). The 

corresponding brake pressure(s) is then sent to the control 

wheel(s) to stabilize the vehicle. The starting point of the 

ESC activation can be thought of as the beginning of the 

handling limit.  

  More specifically, we define a relative handling limit 

margin xh  as in the following  

0

0

0

x

x x
if x x

x

x x
h if x x

x

otherwise

− 
≤ ≤!

!
−!

= ≤ <"
!
!
!
#

   (8) 

where x  is the deviation of a motion variable from its 

reference value,  [ , ]x x  defines the deadband interval within 

which x  falls without initiating the ESC, ABS or TCS 

intervention. x  can be any of the control variables defined in 

the last section.  

  The benefit of 
xh  defined in (8) is that the driving condition 

can be quantitatively characterized into different categories. 

For instance, when 10%xh ≤ , the driving condition might be 

categorized as a condition in a red zone where the driver 

needs to have a special attention or take some special actions 

(e.g., slowing down the vehicle); when 10% 40%xh< < , the 

driving condition is deemed as in a yellow zone which needs 

some level of special attention from the driver; when 

40% 100%xh< ≤ , the driving condition is deemed as a 

normal condition which  is in a green zone and the driver 

only needs to maintain his normal driving attention.  

  More specifically, let's use the control variables computed 

in the last section to discuss the computation of 
xh s. The 

vehicle’s yaw handling limit margin during oversteer 

situations 
OSh (where 

z ztω ω>  when the vehicle is turning to 

the left and 
z ztω ω< when vehicle is turning to the right) can 

be computed from (8) by setting 
z ztx ω ω= −  and 

zdbosx xω= = − , where 
zdbosω  is the oversteer yaw rate 

deadband as defined in (2).  

  Similarly, the vehicle’s yaw handling limit 
USh for 

understeer situations can be computed from (8) by setting 

z ztx ω ω= −  and 
zdbusx xω= = − , where 

zdbusω  is the 

understeer yaw rate deadband as  defined in (4).  

  Notice that the aforementioned deadbands might be 

functions of the vehicle speed, the magnitude of the target 

yaw rate, the magnitude of the measured yaw rate, etc. The 

deadbands for the understeer situation ( 0x < ) and the 

oversteer situation ( 0x > ) are different and they are tunable 

parameters. 

  The vehicle’s sideslip handling limit margin 
SSRAh can be 

computed from (8) by setting 
r rtx β β= −  and 

rdbx xβ= = −   

  The longitudinal handling limits of the vehicle involve the 

conditions which either the driving or the braking force of 

tires approach the handling limit. The traction control 

handling limit margin for the ith driven wheel 
iTCSh can be 

computed from (8) by setting
ix λ= , 0x = , and 

tbx λ= . 

The ABS handling limit margin for the ith wheel 
iABSh can 

be also computed from (8) by setting 
ix λ=  , 

bpx λ= , and 

0x = . The final traction and braking handling limit margins 

are defined as  

{1,2,3,4} {1,2,3,4}
min , min

i iABS ABS TCS TCS
i i

h h h h
∈ ∈

= =     (9) 

  Notice that further screening conditions are used in 

computing the aforementioned handling limit margins. For 

instance, one of the following or the combination of some of 

the following conditions might be used to set the handling 

limit margin as 0: a magnitude of the target yaw rate is 

beyond certain threshold; a magnitude of the measured yaw 

rate is greater than certain threshold; a driver's steering input 

exceeds certain threshold; the extreme conditions such as the 

vehicle’s cornering acceleration > 0.5g; the vehicle’s 

deceleration > 0.7g; the vehicle is driven at a speed beyond a 

threshold (e.g., 100 mph) 

  In order to test the aforementioned handling limit margin 

computations and verify their effectiveness w.r.t. the known 

driving conditions, a vehicle equipped with a research ESC 

system developed at Ford Motor Company was used to 

conduct vehicle testing.  

  For the driving condition profiled by the vehicle speed, 

throttling, and braking depicted in Fig. 2, the measured and 

computed vehicle motion variables are shown in Fig. 3. The 

corresponding individual handling limit margins USh , OSh , 

TCSh , ABSh , and SSRAh  are shown in Fig. 4.  This test was 

conducted as a free form slalom on a snow pad with all ESC 

computations running but the brake pressure apply was 

turned off (in order for the vehicle to approach the true limit 

handling condition).  

  For another test, the vehicle was driven on a road surface 

with high friction level. The vehicle speed, traction, and 

braking profiles for this test are depicted in Fig. 5. The 

vehicle motion states are shown in Fig. 6.  The 

corresponding individual handling limit margins USh , OSh , 

TCSh , ABSh , and SSRAh  are shown in Fig. 7. 

  An envelope variable of all the individual handling limit 

margins is defined as 

min{ , , , , }env OS US TCS ABS SSRAh h h h h h=       (10) 

  Considering that sudden changes in the envelope handling 

limit margin might be due to signal noises, a low-pass filter 

( )F z  is used to smooth envh  so as to obtain the final 

handling limit margin: 

( ) envh F z h=    (11) 

  For the vehicle test data shown on Fig. 2 and Fig. 3, the 

final handling limit margin is depicted on the upper part of 

Fig. 9, while for the vehicle test data shown on Fig. 5 and 
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Fig. 6, the final handling limit margin is depicted on the top 

part of Fig. 10. 
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Fig. 2. Vehicle speed, traction, and braking profiles. 
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Fig. 3. Vehicle motion states of yaw rate and sideslip angle.  
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Fig. 4. Individual handling limit margins 
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Fig. 5. Vehicle speed, traction, and braking profiles 
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Fig. 6. Vehicle motion states of yaw rate and sideslip angle 
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Fig. 7. The individual handling limit margins 

IV. DRIVER'S DRIVING STYLE CHARACTERIZATION  

  In this section, we use the final handling limit margin 

computed in (11) to characterize vehicle handling related 

driving conditions and their impact on the driving style.   We 

introduce the concept of a Handling Risk Factor (HRF) as 

the measure of how a driving condition is related to the 

handling limit.  The handling risk factor r is defined as the 

complement of the final handling limit margin h, i.e. 

1r h= −     (12) 

  The handling risk factor is minimal ( 0r = ) when the final 

handling limit margin h is maximal ( 1h = ) and vice versa.  

The HRF is further used to develop a probabilistic model 

describing different categories of driving styles which are 

reflected by the current driving conditions with respect to the 

handling limit.  

  Generally speaking, a cautious driver usually drives 

without frequent aggressiveness, i.e., fast changes of 

steering, speed, and accelerations. Hence it is reasonable to 

characterize a cautious driver as the one who constantly 

avoids using extreme driving inputs and getting close to the 

maximal handling risk. An average driver likely exhibits a 

higher level of HRF than a cautious driver does. An expert 

driver might be more skillful in controlling the vehicle, i.e., 

he can drive with a relatively high level of HRF for a long 
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duration without having the vehicle pass the maximal 

handling limit.  A reckless driver exhibits a careless 

handling behavior which is unpredictable and could induce 

fast changes. The reckless driver is expected to drive with 

handling risk factor that might approach the maximum 

( 1r = ) very briefly from time to time, thus causing frequent 

triggering of the related safety systems.  

  Notice that the difference between the expert driver and the 

reckless driver is that the former can hold a driving 

condition at a relatively high HRF level for long duration, 

while the latter can only hold at the similar level for a short 

duration before causing the vehicle to pass the maximal 

handling limit due to the driver's poor control capability. 

Since the handling risk factor ranges defining cautious, 

average, expert, and reckless driving behavior (w.r.t. the 

limit handling conditions) are not well defined, we use fuzzy 

subsets to quantify the four categories of drivers. We further 

evaluate those categories probabilistically based on a 

specific driver style.  The fuzzy subsets associated with the 

categories of cautious, average, expert, reckless drivers are 

described by the following membership functions  

( ), ( ), ( ), ( )c e a rr r r rµ µ µ µ  

defined over the HRF universe [0, 1].  Fig. 8 shows the 

relationship between the degrees of membership for each of 

those categories and the HRF.    
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Fig. 8. Membership functions characterizing the four driver 

categories based on the handling risk factor 

  The membership functions in Fig. 8 can be assigned to any 

event that is represented by a specific HRF with value kr  

using a four dimensional vector 

[ ( ) ( ) ( ) ( )]T

k c k e k a k r kd r r r rµ µ µ µ=  

of its degree of membership to each of the four categories - 

cautious, average, expert, and reckless.  For example, HRF 

value 0.4kr =  (corresponding to handling limit margin 

value 0.6kh = ) will translate to the degrees of membership to 

the cautious, average, expert, and reckless categories:  

(0.4) 0.46, (0.4) 0.85

(0.4) 0.09, (0.4) 0.22

c e

a r

µ µ

µ µ

= =

= =
  

  The membership grades encode the possibilities that the 

event characterized by a HRF with value 0.4r =  (or the 

handling limit margin 0.6h = ) might be associated with any 

of the four partitions.   The vector of membership values 
kd  

makes the association between a single driving event and the 

possible driver characterization with respect to the HRF of 

that event.  In order to characterize the long term behavior of 

the driver we need a probabilistic interpretation of the 

possibilities that are generated by multiple events. By adding 

the membership values for each event we essentially 

aggregate the overall possibilities that a specific driver can 

be categorized as cautious, average, expert, and reckless, i.e. 

the vector: 

*

1

[ ( ) ( ) ( ) ( )]
N

T

c k e k a k r k

k

d r r r rµ µ µ µ
=

=$   (13) 

where N  is the number of samples. The aggregated 

possibilities can be considered as frequencies (sometimes 

referred to as fuzzy frequencies) since they reveal how 

frequently and to what degree the HRFs for the multiple 

events can be cascaded to the four categories.  The 

alternative to aggregating the possibilities, i.e. adding the 

membership functions, is to add 1 if the specific membership 

grade ( ), { , , , }i kr i c a e rµ ∈  is greater than a prescribed 

threshold value, e.g. 0.8, or 0 otherwise, resulting in 

calculating the conventional frequency of the four 

categories.  From the aggregated possibilities we can 

calculate the probabilities of the categories cautious, 

average, expert, and reckless driver style: 
1

* *

{ , , , }

i i j

j c a e r

p d d

−

∈

% &
= ' (

) *
$   (14) 

where { , , , }i c a e r∈ .  The probabilities ip 's are calculated 

from the aggregated possibilities (fuzzy frequencies) and can 

be considered as the "fuzzy" probabilities.  The reason for 

the fuzziness here is the lack of certainty in characterizing 

the relationship between the four categories and the HRF. 

For the special case of crisply defined categories 

(represented by intervals rather than fuzzy subsets) the 

possibilities transform to Boolean values, their aggregated 

values become frequencies, and consequently the "fuzzy 

probabilities" ip 's are translated to the conventional 

probabilities.  
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Fig. 9. The final handling limit margin and the probability of 

the driver’s driving style 

  The most likely driver category i* is the one that is 

characterized with the highest probability, i.e. 

*

{ , , , }

arg max( )
i

i c a e r

i p
∈

=   (15) 
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Fig. 10. The final handling limit margin and the probability 

of the driver’s driving style 

  The frequencies based calculation of the probabilities pi's 

can be expressed in terms of the average frequencies  
1

* *

{ , , , }

/ /i i j

j c a e r

p d N d N
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∈

% &
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  Alternatively, it can be expressed through the exponentially 

weighted average frequencies where the higher weights are 

assigned to the possibilities that are associated with the most 

recent events.  Numerically, the process of generating a 

weighted average with higher weights corresponding to the 

recent observation can be accomplished by applying a low 

pass filter implementing the exponential smoothing 

algorithm in the time domain: 

        * * * *(1 ) ( )new old k old k oldd d d d d dα α α= − + = + −  (17) 

where the constant forgetting factor 0 < α ≤ 1 controls the 

rate of updating the mean d* by assigning a set of 

exponentially decreasing weights to the older observations. 

For a constant forgetting factor α,  expression (17) 

recursively generates a vector of positive weights: 
1 2[(1 ) (1 ) (1 ) ]k k kW α α α α α α− −= − − − ⋅⋅⋅  (18) 

with a unit sum. Vector W delineates a weighted average 

type aggregating operator with exponentially decreasing 

weights that are parameterized by the forgetting factor α.  

Parameter α defines the memory depth (the length of the 

moving window) of the weighted averaging aggregating 

operator.  Therefore, the filtered value d* of the membership 

grade vector in (17) represents the weighted averages of the 

individual possibilities over the weights W. Since all of the 

aggregated possibilities are calculated over the same moving 

window of a length of Kα = 1/α,  we can consider them as 

representations of the frequencies of the associations with 

each of the four concepts.  Weighted average (17) is 

calculated over the events with indexes belonging to a soft 

interval: 

       s ∈  {k – Kα +1, k]  (19)   (16) 
where symbol { indicates a soft  lower bound that includes 

values with lower indexes than (k – Kα) with relatively low 

contribution.  Consequently, the aggregated possibilities that 

form the vector d* can be converted to probabilities 

according to expression (14). 

  For the vehicle testing depicted by Fig. 2, 3 and 4, the 

individual pi's are shown on the lower plot of Fig. 9,  

indicating that for most of the driving, the driver exhibited a 

reckless driving behavior, which is consistent with the large 

value of the sideslip angle in Fig. 3 (peak magnitude of the 

sideslip angle exceeds 10 degree). For vehicle testing 

depicted by Fig. 5, 6, and 7, the individual pi's are shown in 

the lower plot of Fig. 10, indicating that the driver initially 

exhibited an average driver behavior and then transitioned to 

a reckless driver behavior.  

  The calculated probabilities define the most likely HRF 

based characterization of a driver for the time window that is 

specified by the forgetting factor α.  By modifying the 

moving window we can learn and summarize the long and 

short term characterization for a specific driver based on the 

HRF.  

  In order to predict the impact of the changes in HRF on the 

driver’s characterization, we introduce the notion of 

transitional probabilities.  The Markov model P 

probabilistically describes the set of transitions between the 

current and the predicted value of the driver category: 

44434241
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j
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where pij is the probability of switching from category i at 

time k to category j at time k+1 and  pii = max(pi) is the 

probability that is associated with the dominating category i 

at time  k,  , { , , , }i j c a e r∈ .  The transitional probabilities pij 

are derived from the transitional aggregated possibilities that 

are updated only if i = arg max(pl) at time k and j = arg  

max(pl), { , , , }l c a e r∈  
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(20) 

  The transitional probabilities are then calculated by 

converting the aggregated transitional possibilities to the 

probabilities.  The maximal transitional probability pij 

determines the transition from category i to category j as the 

most likely transition. 
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Fig. 11. A local driving test 
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  Fig. 11 uses a local driving vehicle test to verify the long 

term driving behavior characterization. The driver generally 

shows a cautious driving style (which could be a novice, 

average or expert driver). At the time instant around 190 

seconds, the vehicle was turned with some degree of 

aggressiveness which can be seen from the peak at the HRF 

plot, and the driving style transitioned to the average 

category. Since no major HRF events were further 

identified, this category was carried out for the rest of the 

driving cycle in conjunction with the concept of the long 

term characterization.  

  The driving style characterization can be used for long term 

advising and driver coaching.  Another possible application 

relates to the opportunity for vehicle personalization through 

fine tuning control parameters to fit the specific driver’s 

style. For example, the ESC or brake control system can 

exploit such a driver style characterization to adapt the 

actuation threshold to fit the personal driving behavior. For 

instance, an expert driver might need less frequent ESC 

activations than a less experienced driver might in facing the 

same driving conditions (notice that there is a minimum 

requirement for adjusting the thresholds such that a mistake 

by an expert driver can still be helped by the ESC function).  

This requires additional study and will be subject of future 

research. 

V. CONCLUSION 

  This paper proposes an approach to the problem of 

developing a real time driver advisory system by utilizing 

information from electronic stability controls.  The focus is 

on identifying the relationships between the current driving 

condition and the current vehicle handling limit margins.  

Computed margins are also used to provide real time driving 

style characterization. Future work will focus on integrating 

the concepts pursued here with the other driver warning 

functions such as forward collision warning, lane departure 

warning, etc. to generate an advisory system that can provide 

timely advice, warning prioritization and arbitration based on 

the scenario in hand.   We believe this approach provides a 

small step towards a rather complicated integration between 

driver and electronic control. 
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