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Abstract

A new approach to real parameter margin computation for dynam-
ical systems with multilinearly uncertain parameters is presented.
The concept of fwo real critical constraints is introduced. The
proposed approach is essentially a frequency-sweeping approach
which is based on a sufficient condition for checking for critical
instability only in the corner directions of the parameter space
hypercube.

1. Introduction

This paper is concerned with the problem of computing the
structured singular values, u, for uncertain dynamical systems 1].
In particular, the problem of computing real parameter margin, or
real u, is investigated, which is of much current research interest
[2-7). We exploit the concept of separating the real and imaginary
parts of a characteristic polynomial equation. The resulting two
equations will be referred to as the two real critical constraints
and the vertex (or corner) property of each constraint equation
will be utilized.

The paper is organized as follows. In Section 2, we introduce
the two real critical constraints, the two-constraint real u, and the
single-constraint real p. In Section 3, we show that the single-
constraint real u always reaches its value at a corner for multilin-
early uncertain systems at a given frequency. We then present the
main result: a sufficient condition for the critical instability to oc-
cur at a corner of the parameter space hypercube of multilinearly
uncertain systems. In Section 4, we apply the results of Sections 2
and 3 to the problem of computing real parameter margins of dif-
ferent types of characteristic polynomial: an interval polynomial,
a polytopic polynomial, and a polynomial with multilinearly un-
certain parameters. In Part II of this paper [17], several examples
in the literature are used to illustrate the proposed concept and
approach.

2. Two Real Critical Constraints

Consider a characteristic polynomial ¢(s;p) with the real un-
certain parameter vector

p=(p1,p2,--*,P¢)

where

1,2,---.¢

=

<P P i

and P, and P, are, respectively, the prescribed lower and upper
bounds of the ith element of the uncertain parameter vector p.
The symbol (p1,p2,- - -, pe) denotes a column vector in this paper;
that is, (p1,p2,+-*,pe) = [p1 P2 -+ PT-
The normalized uncertain parameter vector § € D is then de-
fined as
&= (61,82,+",8¢)

and the parameter space hypercube D is defined as
Di={6:-1<6<1, i=1,--,4

where

5= 2(fl - pOl) (1)
Pi +p,

and

poi = (B +p)/2, i=1,-- ¢
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The nominal system of § = 0 is assumed to be asymptotically
stable. We also define
kD:={§ : -k <6<k, 1=

1’...75}

where x is a real positive number.
For a characteristic polynomial of the form ¢(s;8), we have the
following lemma.

Lemma 1: For any nth-order polynomial in s of the form
$(s;6) with uncertain parameter vector § € D, there exists an
n X n rational matrix M(s) and a diagonal matrix A € X such
that

$(s;6) = b(530) det[I + M(s)A] )
where
X ={A : A =diag(6;;), t=1,---,0} 3)
where I; denotes an m; X m; identity matrix and E‘l.=1 m;=n
Proof: See Appendix.

According to Lemma 1, the critical stability constraint equation
d(jw;8) =0 (4)
simply becomes
det(/ + M(jw)A] =0
since ¢(jw;0) # 0 for all w.

Definition 1: The real parameter robustness measure x(w)
and the real structured singuler value measure p(w) associated
with the critical constraint equation (5) are defined as

w(w) = 1/u(w)
Airelf;({n : det[] + M(jw)A) =0, 5(A) < w}

(5)

sup {x : det[] + M(jw)A] #0, 5(A) < &}
AEX

where X is the set of all repeated blocks defined as (3). The real
parameter margin x* and the associated real structured singular
value pu* are then defined as

. —

k* = 1/p* = inf x(w) 6)
w

and the corresponding uncertain parameter vector is called the

critical parameter vector and denoted by §°.

The critical stability constraint equation (4) or (5) is a complex
constraint. We now exploit the idea of separating the real and
imaginary parts of the constraint equation (4), as follows:

Re[¢(jw;8)] = fi(w)dr(w: ) =0

Im[¢(jw;8)] = fa(w)d2(wié) =0
where fi(w) and f2(w) are polynomials which are independent of
6 and ¢1(w;0) # 0 and ¢2(w;0) £0 forall w > 0

According to Lemma 1, there exists a real rational matrix
M, (w) and M3(w) such that

{7a)
(7b)

¢i(w; 8) = di(w;0)det[] + Mi(w)A,], i=1,2 (8)

Consequently, we have the following twe real critical con-
straints

N (w) det[I + M, (w)A;] =0
f2(w) det[T + M (w)A2] =0

(9a)
(9b)



where
Xi={Ai:4; = diag(6i; L), 6i; €R, j=1,---,4;}, i = 1(,2)
10
and {635, j=1,---,£1} and {635, j = 1,---,£2} are two subsets
of {6;,i=1,---,£}, and I; is an m;; X m; identity matrix with

E;;l mi;=ni, t=1,2.

Polynomials with coefficients linearly dependent on and/er in-
dependent of uncertain parameters §; can be expressed as a form
with rank-one matrices M; (w) and M (w). This result is given as
the following lemma.

Lemma 2: The critical stability constraint (4) of an interval
polynomial or a polytopic polynomial can be expressed as two real
critical constraints of the form (9) with rank-one matrices M, (w)
and Mz (w).

Proof: See Appendix.

Definition 2: A frequency at which the two real critical con-
straints (9) reduce to a single constraints is called the degenerate
frequency.

Note that the real non-negative roots of the polynomials f; (w)
and f2(w) of (9) are the degenerate frequencies. Degenerate fre-
quencies cause isolated discontinuities in u(w). These discontinu-
ities include those denoted as type one and type two discontinuities
in [9].

Definition 3: The two-constraint real 1 measure, associated
with the constraints (9), is defined as

1/p12(w) == Ailél;({&[diag(Al, Az)] : det[I + MiA]=0
and det[] + M2A;) = 0} (11)

The single-constraint real p measures, uj(w) and pa(w), associ-
ated with each constraint in (9), are defined as:

1/py (w) == Alixelfxl{é(Al) sdet[I + My A] =0} (12a)

1/p2(w) := Aaix;l;(g{&(Az) cdet[I + M24A2] =0}  (12b)

The real u measure of Definition 1 is related to the two-
constraint real u measure and the single-consiraint real u mea-
sures at each frequency w, as follows:

m2(w) if fi(w)#0, fo(w) £0
W) ={ @) HAMEGHG =0 (3
#2(w) if fi(w) =0, fa(w) #0

where f1(w) and f2(w) are the two polynomials defined in (7).

The following lemma provides sufficient conditions determining
the real u* using p12(w), p1 (w) and p2(w).

Definition 4: Let $ = {§;, i = 1,-.-,£}, S; and S, are two
subsets of S and S US; = S. If $ NS, # @ we define the
restricted parameter vector d in S) N Sy, as follows:

d=(d1,--+,dm); i €51NSg, i=1,---,m (14)
That is, d; (i = 1,.--,m) are some elements of § = (61,-++,62)
and m < ¢ is the number of elements in S; N S,.

The restricted parameter vectors associated with p1 and puy are

denoted by ds, and ds,.

Lemma 3: Let S = {6;, i = 1,---,£}, S1 and S2 are two
subsets of § with $; U S; = S. Then consider the following two
cases: 1) 51 NSz = @ and 2) S; N S; # §. By using the previ-
ous definitions of u1(w), #2(w), and p12(w), we have the following
results:

Case 1: If S; and S; are two distinct sets of the uncertain
parameters, then the real u*, or the real parameter margin &*,
can be found as:

1/5* = u* = sup p12(w) = max{supul(w),supua(w)} (15)

Case 2: If S; NS, # @ and at some critical frequencies w,,

m(we) = pa(we)
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and if the restricted parameter vectors in S; N S3, associated with
#1{we) and pz(wc), become

(16)

ds, =dg,
then the real u* is

(17)

1/x* = p® = sup p12(w) = max p1 (we) = max pz (we)
w we we

Proof: The proof of this lemma is rather trivial and is therefore
omitted here.

3. Sufficient Conditions for Corner Property

A characteristic polynomial, which has coefficients affine with
respect to each uncertain parameter §;, is called a multilinearly
uncertain polynomial A dynamical system with such character-
istic polynomial is called a multilinearly uncertain system or a
system with multilinearly uncertain parameters.

If a system is described by the critical stability constraint of
the form (5) with

A = diag(y,62,-+,64)

V4

(18)

m;=1 and ¢t=1,--.

then the system is a multilinearly uncertain system. However, not
all multilinearly uncertain polynomials can be expressed in the
form of (5) with (18); sometimes, A has repeated entries.

If the critical instability occurs at one of the corners of the
parameter space hypercube, then the real parameter margin and
the corresponding critical parameters can be easily determined
using the following lemma.

Lemma 4: If the critical instability of the constraint (5) with
possible repeated entries in A occurs at one of the corners of the
parameter space hypercube, then

#(w) = {max p[~ EM (jw)]} (19)
Ee&

where p(—EM) denotes the maximum real eigenvalue of ~EM
and it is defined as zero if —~ EM does not have real eigenvalues.
Also, the corner matriz, denoted by E, is defined as

€ ={E : E=diag(eil;), e, =+lor —1, i= 1,.--,¢}

The real parameter margin x*, or real u*, is then determined as

k* = 1/p* = inf x(w)

The corresponding critical corner matrix E* and critical corner
vector e* are, respectively, given by

E*
e*

diag(e} I;)

(e7,€3,-+,e7)

(20)
(21)

Furthermore, the critical parameter vector §* can be determined
as
6“ = ﬁ.e.

Proof: See [13]

Remark: If E € £, then —E € € and \(EM) = -A(-EM)
where A(EM) denotes the eigenvalues of EM. Thus, #(w) defined
in (19) is always positive real.

We now give the following sufficient condition for the corner
property of a multilinearly uncertain system.

Lemma 5: If a multilinearly uncertain polynomial ¢(jw;6) is
always real-valued at some frequency w, then the critical instability
for this uncertain polynomial at that frequency occurs at one of the
corners of the parameter space hypercube &x*D, where § € x*D,
or —k* <& <k*(i=1,2,---,0).

Proof: See [13,14]

Corollary of Lemma 5: In a multilinearly uncertain system,
the single-constraint real 4 defined as in Definition 3 must reach



their values at one of the corner of the parameter space hypercube
&*D.

Theorem 1: At the degenerate frequencies defined as in Defi-
nition 2, the critical instability of a multilinearly uncertain system
occurs at one of the corners of the parameter space hypercube.

Proof: At the degenerate frequencies, the two critical con-
straints (9) reduce to a single real valued linear or multilinear
constraint, hence, we easily obtain this result from Lemma 5.

Corollary of Theorem 1: At w = 0, the critical instability
occurs at one of the corners of the parameter space hypercube.

Proof: M(j0) in the critical constraint (5) is a real-valued
matrix. Hence, det{I + AM(j0)] is a real-valued and w = 0 is one
of the degenerate frequencies. From Theorem 1, we obtain this
corollary.

Theorem 2: Consider the two real critical constraints (9) with
multilinearly uncertain parameters.
Case 1 of Lemma 3: The critical instability occurs at one of the
corners of the parameter space hypercube.
Case 2 of Lemma 3: If uj(w) and p2(w) plots intersect at some
frequencies w,'s and if the restricted parameters vector subject to
S1 N S; associated with u1(wc) and pz(wc) satisfy (16), then the
critical instability occurs at one of the corners of the parameter
space hypercube.

Proof: This theorem can be proved using Lemmas 3 and 5.

4. Applications
Interval Polynomial

Consider a family of real polynomials

#(s,p) =s" + a1 sl tan_15+an (22)

with interval coefficients described as
a;,<a;i<T, i=1,2,---,n
The nominal values of a; are
aoi = (@i —¢;)/2, 1=1,2,--,n

Using the parameter transformation of (1), we obtain the nor-
malized parameters §; which are in D.

A polynomial of the form (22) whose zeros lie on the open left-
half s plane is called a Hurwitz polynomial. Kharitonov’s theorem
provides a simple way of checking whether a given interval poly-
nomial is Hurwitz or not. In this section we use p;(w),i = 1,2
to obtain the real parameter margin s* of an interval polynomial.
An alternative proof of Kharitonov’s theorem is also presented in
this section.

From Lemma 2, an interval polynomial can be written as two
real constraints with the rank-one matrices M(w), i =1,2. If n
is an even integer, we have

Mi(w) = ﬂu—l—)—, =1,2
gi(w)
Ay = diag(62,84,-++,6n), Az = diag(81,63,...,6r-1)
o) = o = [1,1,--~,1]T is of n/2-dimension
Br=p02 = [-w"_z,w"_‘, . --,—wQ,(—l)"/z]T is of n/2-dimension
g1(w) = " = a02w™ % 4 -+ (=1)"aon
92(w) = —a01w™™ 2 4 agaw™ ™ — -+ (=1)ag(n_y)

Similar results can be obtained for the case of odd n.
Since M;(w) and M;(w) are rank-one matrices, we obtain the
following theorem

Theorem 3: The p; and p2 measures of an interval polyno-
mial (22) reach their values at one of the corners of the parameter
space hypercube and can be expressed as

_ al EiBi(w)
gi(w) ’

pi(w) = 1=1,2 (23)
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where

E; = —sgn(g;) diag{sgn(Bi1,sgn(Bi2),---,1}, i=1,2 (24)
and B;; is the jth element of the column vector 3, and sgn(-)
denotes the signum function. The real parameter margin is then

obtained as

oT BB (w) _a,TEzﬂz(w)
g1(w) 92(w)

L

1/s*=p

sup p12(w) = sup{—
w w
(25)
Proof: See Appendix
Kharitonov’s Theorem

Kharitonov's theorem is proved here using Theorem 3. Without
loss of generality, we only consider the case of even n.

The uncertain parameter set corresponding to u; and uz of
an interval polynomial are disjoint (i.e., Sy NSz = §), and those
disjoint parameter sets have the same bound of x*. Consequently,
from Theorem 3, we have either

T T
. aj E1fr(we) o B2f2(we)
= — =|- 26
g1(we) l 92(we) I (26)
or
T T
. _oiBafa(w) | og Erfai(we)
# g2(we) = gl(“’c) | @)

where E; are given in (24).
For the case with (26), the possible critical parameters are

(62,64, -,6n) = —x*[sgn(B11),sgn(B12), -+~ 1]7 sgn(g1)

(61,63, 1 6n—-1) = £r"[sgn(B21),s8n(B22), - -~ ,117 sgn(g2)
which give

(82,64, 2 6a) = K [=1,1,=1,+-, (=1)*/2*1]7 sgn(g;)

(61,83, 6n—1) = R4 [-1,1, =1, -+, (=1)*/2+1]T sgn(g,)

For the case with (27), the possible critical parameters are

(61,63,+-
(62, 64,5+

\6n—1) = ~r*[sgn(Ba1),sgn(B22), - -+, 1] sgn(g2)
\6n) = £r*[sgn(B11),sgn(B12), -+, 1] sgn(a1)

which give

(61,63,-+-
(62,64, -

1) = R [=1,0, -1, (<12 sgn(n)
J8n) = 17 [-1,1, =1, -, (=1)*/2*1T sgn(g1)
There are total sixteen combinations of possible critical param-
eters, but only four of them are different from each other. These
four corner vectors for the possible critical instability are
e=[-1,-1,1,1,---,
e=[-1,1,1,-1,
e=[1,-1,-1,1,---,

1241 (_qyni24T
, 1)n/2'(_1)n/2+l]T

1)n/2+1' (_1)71/2]7‘
l)n/Z’ (_1)n/2]T

. (_
. (_
. (_
e=(1,1,-1,-1,---,(-
which are, in fact, Kharitonov's four corners.
Polytopic Polynomial

Consider a polynomial whose coefficients depend linearly on the
perturbation parameter vector § € x*D

$si6) ="+ > ai(6)s" (28)
=1

where
¢
ai(8) = aoi + E ai;6;, aij are constants
i=1



From Lemma 2, the critical constraints can be written as (9) with
rank-one matrices M) (w) and Mz (w) such that

Mi(w) = ai(w)8F (w), i=1,2

Consequently, we obtain the following result

Theorem 4: The two single-constraint real p measures of a
polytopic polynomial of (28) will reach their values at one of the
corners of the parameter space hypercube and can be expressed as

pi(w) = —af (WEifi(w), i=1,2 (29)
where

E; = — diag{sgn(xi10:1),sgn(xi2Bi2), - - - , sgn{exig, Bie; )}

for i = 1,2, and «;; and f;; are, respectively, the jth elements of
the column vectors o; and §;.

If p1(w) and pa(w) intersect at some frequencies and at those
frequencies the overlapped part of uncertain parameters are of the
same values in the corner matrices for both u1(w) and u2(w), then
the critical instability occurs at one of the corners of parameter
space hypercube.

Proof: The first part of this theorem is an extension of The-
orem 3. The second part is an obvious application of Theorem
2.

Multilinearly Uncertain Polynomial

For a general case of multilinearly uncertain polynomial, from
Corollary of Lemma 5, we know 1 (w) and p2(w) will reach their
values at one of the corners of the parameter space hypercube D
at any frequency w. Hence we have

Theorem 5: The two single-constraint real u measures will
reach their values at one of the corners of the parameter space
hypercube and can be expressed as

pi(w) = ggg_p[—EiMi(w)]. i=1,2

where
& :={E; : E; = diag(e;I;), ej = +1 or —1Vj}

#(-) denotes the maximum real eigenvalue of a matrix. If uj(w)
and pz(w) intersect at some frequencies and at those frequencies
the overlapped part of uncertain parameters are of the same values
in the critical corner matrices for both p#1(w) and p2(w), then the
critical stability occurs at one of the corners.

Proof: The first part comes directly from Lemma 4. The
second part is the direct application of Theorem 2.

5. Examples
See [17]

6. Conclusions

The concept of two real critical constraints was exploited for
the real parameter margin computation for dynamical systems
with multilinearly uncertain parameters. The proposed approach
is based on a sufficient condition for checking for critical instability
only in the corner directions of the parameter space hypercube.
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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 1: Let us first prove if a given polynomial
#(3;6) can be written as ¢(s; ) = f(s;6)det[] + M(s)A] where
f(3;6) = ¢(s;0) or not.

For a given rational square matrix [I + M(s)A(5)] with the
elements of § vector appearing in the numerators of each element
of [I + M(s)A(S)], there exist polynomials ¢(s;5), 6§ € D and
¥(3) such that

det[I + M(s)A(S)] = %

because of the property of Smith-McMillan form (e.g., see Theo-
rem 2.3 in [16]) of [I + M(s)A(6)).
Since A(6) = diag(é;), A(0) = 0. Consequently, we have

1= detll] = %b‘—(%) = ¥(s) = #(s;0)



Finally we have

$(s;6)
#(s:0)

The existence of M(jw) and A is obvious. But the actual de-
termination of M(jw) and A is not straightforward. Without loss
of generality, we use the following example to show how to form
M and A for a given ¢(s; 6).

Consider a polynomial with coefficients which are multilinearly
dependent on the four uncertain parameters §;:

det{l + M(s)A] = (30)

#(s;8) = ap + a181 + a262 + azba + a4bs
+ b16162 + ba (81 + 62)83 + ba (61 + 62)64
where a; and b; are functions of s.

We first transform this given polynomial into the determinant
form of a 2 X 2 matrix, as follows: -

$(5;6) = det[ho + k161 + h282 + habs + habs + hs6162)

where h;, (i = 0,--+,5) are 2 X 2 matrices, as follows
_ 0 ag _[0 a _ [0 a2
o= & g )om=[0 7] m=l0 7]
b b 0 b
A I FR A R

In order to change the term hs6162 into linear fractional form,
we further express the determinant as the determinant ofadx4
matrix

é(jw; §) = det[Ho + H161 + Hab2 + H383 + Hebd] (31)
where H;(i = 0,---,4) are 4 X 4 matrices
m=[le ] m= %]
O - N P o
Ho={ o ot |

Taking the singular value decomposition of H;, (i = 1--+), we
obtain
H;=L;R;
with rank{L;] = rank[R;] = ;.
Then (31) can be written as

#(s;8) = det[Ho] det[I + M(s)A] (32)

where
M = RH; 'L
and
R=[R,R], - K"
L= [L],Lz,‘--,L_s]
A = diag(8;Ir,)

Finally we obtain

[ O 1 0 0

0 o 0 1

1 o 0 O

R= 0 1 0 O

b a3z 0 O

b3 a4 O 0O
a1 b 0 a2 1 1
L-| 1 o o 1 00
- 0 0o -1 0O 0 O
LO 0 0 -1 0 0

and
A = diag(61,61,62,62,63,64)
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This form of M is not necessarily unique.
We can show that (32) can be expressed as (30) since

0
-1

ag

det[Hp] = det[ho] = det [ 0

| =20 =0

Proof of Lemma 2:
Consider the constraint with the linearly-dependent and/or
linearly-independent uncertain parameters of the form (4).

I
#(s;6) = 6(5:0) + Z ai(3)6; =0

=1

where § € D denotes the uncertain parameter vector and D de-
notes the parameter space hypercube. This polynomial equation
can be separated as follows:

4
Re[d(s;0)] + Y _ Refailsi =0

=1

(33)

2
Im{4(s:0)] + Y _ Imfa.]8i =0

i=1

(34)

Equation (33) can be rewritten as

0= det [ Re[¢(s;0)] + OZ:=1 Rela;}6; © ]
1

= Re[e(s;0)] det[I + MA)
where

A = diag(81,62,..-,8¢)
1
. 1

M= P [ Refai]

Refar] |
1

Note that M is a rank-one matrix. Similar result can be obtained
for the other constraint (34).

Proof of Theorem 3:

From Corollary of Theorem 2 we know uj{w) and ug(w) will
reach their values at one of the corners of the parameter space
hypercube. Hence, according to Lemma 4, we have

wilw) = max pl-E:M;(jw)], i=1,2

Since
depr # BT, T (@)Pa(0)
9i(w) gi(w)

. AT (@)EBi(w)
=2+ —_g.-(w)

we have ’I‘( Vi ()

wi(w) = max{-——"— g‘,(w)' }
Let

E; = —sgn(g;) diag{sgn(Bi1),sgn(Bi2), .., 1}

then u;(w) will reach their maximum values.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


