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Abstract

This paper presents a low order controller design method, using closed loop modeling
plus covariance control, with application to the benchmark problem in structural control
for the active mass drive system at the University of Notre Dame [1]. This method
�nds a satisfactory controller by iterating between closed loop modeling and covariance
control. The closed loop modeling implies that the model used for model-based control
design is extracted from the feedback system of the last iteration.

Introduction

It is well-known that the modeling and control are not independent problems [2],
especially when the performance is stringent and the system is complex. Open loop
modeling (identi�cation, model reduction, etc.) may or may not provide a good model
for control design. Civil structures are typically large and dynamically rich (complex
systems with many vibrational modes). Wise use of the relatively large control energy
and the limited control complexity demands a theory for synthesizing a simple controller
to achieve relatively stringent performance. In this case, both structure-control inter-
action and model-control interaction are not negligible. In order to achieve stringent
performances, we have to take those interactions into account. Combining closed loop
modeling with covariance control [3,4] presents a way to incorporate those interactions.
This combination iterates between the control design and plant model extraction from
the previous closed loop system model. Due to the closed loop feature, this combina-
tion indirectly handles those di�culties raised in structural control: spillover, limited
control authority and modeling error.

The benchmark problem in structural control [1] requires designing a compensator
of limited complexity, based on a high-�delity structure model, to achieve as strin-
gent performance as possible. Hence the model-control interaction in the benchmark
problem could be very strong, which implies that the combination of the closed loop
modeling and control is demanded.

Control Design Problem

The active mass drive system at the University of Notre Dame described in [1] can
be depicted by the block diagram shown in (a) of Fig. 1. Where �xg is the ground
acceleration (modeling earthquake excitation), w represents the sensor noise. va and
vs are signals used for modeling purpose. The system measurements are y = [yT1 �xg]

T

with y1 = [xm �xa1 �xa2 �xa3 �xam ]
T , xm; �xa1; �xa2 ; �xa3 and �xam have the same de�nitions

as in [1]. P is a high �delity linear approximation of the actual plant, which includes
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Figure 1 The block diagram description of the AMD system.

possible sensor and actuator dynamics. The state space description of P is

_x = Ax+Bu + E�xg
y1 = Cyx+Dyu+ Fy �xg + w

z = Czx+Dzu+ Fz �xg

K represents the control computer. Considering that the sensor noise w is very small,
the diagram in (a) of Fig. 1 can be simpli�ed as the one in (b) of Fig. 1, where P̂ is
an augmented system including saturation nonlinearities, time delay, A=D and D=A
e�ects. The control problem is to �nd a discrete time controller of dimension less
than 12, with sampling time Ts = 0:001 second, to make those performance indices
J1 � J10 (de�ned in [1]) as small as possible while maintain some hard limits and
robustness requirements. In this paper, the controller for which we are searching is a
linear compensator with the following form

xck+1 = Acxck + Bc(yk �Dyuk); uk = (I +DcDy)
�1(Ccxck +Dcyk) (1)

where Ac; Bc; Cc; Dc are controller parameters to be determined, denote them as K.
With abuse use of notation, we use K to denote the control computer and these control
parameters.

Closed Loop Modeling

For a given controller K, a linear model of the augmented plant P̂ can be extracted
from the identi�ed closed loop system.

Let �xg, w, va and vs be white noise sequences with speci�ed covariances. The
corresponding output sequence is y1. From this I/O data pair, a linear approximation
of the closed loop transfer matrix T (s) from [�xg w + vs va] to y1 + vs + w can be
obtained by using the Q-Markov Cover algorithm [3,4]

y1 + vs + w = T (s)

�
�xg
vavs

�
= [ Tg(s) Ta(s) Ts(s) ]

�
�xg
vavs

�

Let
SSR
= be short for state space realization and the state space realization of the closed

loop system T be

T
SSR
=

h
D C
B A

i
=

�
[ Dg Da Ds ] C

[ Bg Ba Bs ] A

�
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i.e., the states of T satisfy _x = Ax+Bu, y = Cx+Du. Then the state space realization
for P̂ is

P̂
SSR
=

h
Ds 0
Bs I

i
�1

�
[ Dg Da ] C

[ Bg Ba ] A

�
(2)

Compensator Design

Consider the model P̂ obtained from the closed loop modeling in the last section

xk+1 = Âxk + B̂uk + Ê�xgk

zk = Ĉzxk + D̂zuk + F̂z �xgk (3)

y1k = Ĉyxk + D̂yuk + F̂y �xgk + wk

where x represents the system state, z denotes the performance variable, and u is the
control variable. The measurement y1 and w.

Denote K as the set of all controllers which (i) stabilizes the actual AMD plants;
(iii) satis�es the loop gain constraint; (iii) makes the closed loop variables meet the
following hard constraints for the ground excitation with Kanai-Tajimi spectrum

E1 u2 � 1 volts; E1 �x2am � 2 g; E1 xm � 3 cm (4)

and for the 1940 El Centro and 1986 Hachinohe historical earthquake records

jukj � 3 volts; j�xam j � 6 g; jxmk j � 9 cm: (5)

The benchmark problem is actually a multiobjective control problem which can be
expressed as

min
K2K

Ji; i = 1; 2; � � � ; 10: (6)

Due to the performance criteria Ji's involve speci�c disturbance sources (historical
earthquake records and disturbances with Kanai-Tajimi spectrums) and the hard con-
straints, there are no systematic methods to exactly solve the above problem. Instead,
we model the earth quake disturbances as white noises and solve the following problem

min
K2K

E1 z2j (7)

where zj 's reect the variables involved in computing Ji's. In this paper, due to the
closed loop modeling feature, we only take those measured variables, i.e., we have z =
[xm �xa1 �xa2 �xa3 �xam u]T . A solvable control problem which reects indirectly the
objectives in (6) or (7) can be further cast into the following constrained optimization

min
K
fE1 zT0 Rz0 : E1 z21 �

�Z1; E1 z22 �
�Z2; � � � ;E1 z2nz �

�Znzg (8)

where nz is the dimension of z. z0 is a vector performance variable of the following form
z0k = Ĉ0xk+D̂0uk+F̂0�xg. this is similar to the so called output variance control (OVC)
problem [6]. Notice that a deterministic interpretation of the variance constraint is the
peak value constraint.

The above consideration leads to our approach for the benchmark problem, which
can be summarizes as the follows: solving the optimization problem (6) indirectly (i)
by tuning �Z1; �Z2; � � � ; �Znz and solving the optimization problem in (8) which takes care
of the stabilization and hard constraints; (ii) by incorporating closed loop modeling
with (8) which takes care of the control order limitation; (iii) by simulation through
the high �delity evaluation model which �nally validates the controller.
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Let the covariance of �xTg and w be Wg and W . For the given variance bounds
�Z1; �Z2; � � � ; �Znz , the following generalized output variance control (GOVC) algorithm
�nds a controller (1) solving (8). The reason that we call the constrained optimization
problem (8) generalized output variance control problem is due to: (i) GOVC general-
izes the so called OVC problem [6,7], where z0 = u and z is a linear combination of the
plant states and do not include the control variable u; (ii) GOVC deals with generalized
plant description of the form (3) and the controller found in the GOVC algorithm is
not limited to be strictly proper.

Generalized Output Variance Control Algorithm:
Step 1 Solve for X from the following Riccati equation

X = ÂXÂT + ÊWgÊ
T � (ĈT

y + ÊWgF̂
T
y )	

�1(AXĈT
y + ÊWgF̂y)

T

where 	 = ĈyXĈT
y + F̂yWgF̂

T
y . Compute the control parameter

Bc = (ÂXĈT
y + ÊWgF̂y)(ĈyXĈT

y + F̂yWgF̂
T
y )
�1:

Step 2. Choose an initial Q0 = diag(q01; q02; � � � ; q0nz) > 0 and compute Y from the
following Riccati equation

Y = ÂTY Â+ ĈT
0 RĈ0 + ĈT

z Q0Ĉz �

(ÂTY B̂ + ĈT
0 D̂0 + ĈT

z Q0D̂z)�
�1(ÂTY B̂ + ĈT

0 RD̂0 + ĈT
z Q0D̂z)

T

where � = B̂TY B̂ + D̂T
0RD̂0 + D̂T

z Q0D̂z. Compute the control parameters

Dc = �B̂T Y B̂��1; Cc = ���1(ÂTY B̂ + ĈT
0 RD̂0 + ĈT

z Q0D̂z)
T

Ac = Â+ B̂Cc �BcĈy � B̂DcĈy

Step 3. Compute Xc by solving the following Lyapunov equation

Xc = (Â+B̂Cc)Xc(Â+B̂Cc)
T+(B̂Dc+Bc)(ĈyXĈT

y +F̂yWgF̂
T
y +W )(B̂Dc+Bc)

T

Step 4. Compute the output covariance of z

Z = (Ĉz + D̂zDcĈy)X(Ĉz + D̂zDcĈy)
T + (Ĉz + D̂zCc)Xc(Ĉz + D̂zCc)

T

(F̂z + D̂zDcF̂y)Wg(F̂z + D̂zDcF̂y)
T

Let Zii be the i-th diagonal element of Z. For a given integer � (which a�ects the
convergence rate of the algorithm), compute qi = (Zii= �Zi)�qi0, if

Pnz
i=1 jqi�q0ij �

�, stop. Otherwise, set qi ! qi0 and go to step 2, where � is the error tolerance.

Integration of Closed Loop Modeling and Control

The following is the procedure we used to �nd a satisfactory controller.

Step 1 Let �Zi for i = 1; 2; � � � ; nz be the output variance bounds. Choose integer q
(number of Markov/covariance parameters to be matched) and integer nd (length

of the experimental data). Set i = 0 and P̂0 as the evaluation model.

Step 2 GOVC Controller Design: Do model reduction for P̂i to obtain a lower order
model P̂ir. Choose variance bound �j , j = 1; 2; � � � ; nz for the design model P̂ir
and design a controller Ki by using the GOVC algorithm. Store the weight Q.

Step 3 Performance Study: Evaluate the controller Ki with the evaluation model by
white noise excitation and compute the output variances. If the closed loop
system is unstable, the design speci�cation �i's in step 2 are too tight and must
be relaxed. Check whether E1 z2i �

�Zi for all i = 1; 2; � � � ; nz . If this is true, then
go to step 5; Otherwise go to step 4 to update the design model.
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Step 4 Closed-loop Modeling: The state space description for the closed loop system
Ti = [Tg Ta Ts] can be obtained by using the algorithm presented in [4], which

uses the weight Q obtained in step 2. The plant model P̂i+1 can be computed
from (3). Set i = i+ 1 and go to step 2.

Step 5 Get the controller formula from previous iteration. Stop.

Control Design for Benchmark Problem

By using the procedure to the AMD system, a 10th order controller with mea-
surements y = [xm �xa1 �xa2 �xa3 �xam �xg]

T is obtained. For the �rst �ve criteria,
the RMS values of the constraint variables are E1 x2m = 0:4931 cm, E �x2m = 0:9317
g, E1 u2 = 0:1209 volts. Those satisfy the hard constraints in (4). For evaluation
criteria six through ten, the peak values of the constraint variables are xm = 2:1157
cm, �xm = 5:7748 g, u = 0:5933 volts, which satisfy the hard constraints in (5). The
controller achieves the performances summarized in the following table and the loop
gain transfer function is shown in Fig. 2.

J1 J2 J3 J4 J5
0.2085 0.3162 0.3764 0.3804 0.5205
J6 J7 J8 J9 J10
0.4417 0.6582 0.7225 0.8912 1.2766
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Figure 2: Loop gain transfer function.
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